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Group Cost-Sensitive BoostLR With Vector Form
Decorrelated Filters for Pedestrian Detection

Chengju Zhou , Meiqing Wu, and Siew-Kei Lam , Member, IEEE

Abstract— Pedestrian detection has achieved notable progress
in the field of computer vision over the past decade. However,
existing top-performing approaches suffer from high computa-
tional complexity which prohibits their realization on embedded
platforms with low computational capabilities. In this paper,
we propose a robust and fast pedestrian detection frame-
work which is based on the Filtered Channel Feature (FCF)
approach. The proposed framework exploits vector-form decor-
related filters to extract more discriminative channel features
while benefiting from low computational complexity. A novel
group cost-sensitive BoostLR (Boosting with Loss Regularization)
algorithm is proposed to train the classifier. The proposed
training strategy provides more emphasis to the harder samples
by exploring the variations of negatives selected from different
rounds in hard negative mining processing, and hence is able to
boost the overall detection performance. In addition, the proposed
method also benefits from the BoostLR framework to achieve
better generalization. Experiments on the well-known Caltech,
INRIA and CityPersons pedestrian detection datasets show that
our proposed approach achieves the best detection performance
among all of the state-of-the-art non-deep learning methods
and can run one order of magnitude faster than classical FCF
methods (e.g. Checkerboards).

Index Terms— Pedestrian detection, decorrelated channel fea-
ture, cost-sensitive, boosting.

I. INTRODUCTION

PEDESTRIAN detection plays an essential role in a
wide range of applications including intelligent vehi-

cles, surveillance and robotics. Previous works [1]–[13] have
demonstrated that pedestrian detection is a challenging prob-
lem due to high intra-class variation, highly cluttered back-
ground, inconsistent illumination, etc. Apart from the need for
high robustness, real-world applications often necessitate that
pedestrian detection algorithms run in real-time with limited
computational resources (e.g. embedded systems employed in
autonomous vehicle and robotics) [14]–[16]. This imposes the
requirement of low computational complexity on pedestrian
detection algorithms in many real-world applications.

Recently, the Filtered Channel Feature (FCF) frame-
work [10] has gained wide attentions and several works [10],
[17]–[20] have demonstrated its effectiveness and efficiency
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for pedestrian detection. As indicated in [10], the FCF
approaches vary based on the filters used in feature extraction.
For example, Checkerboards exploited a set of checkerboard
pattern as filters to extract filtered channel features [10]. Rotat-
edFilters explored several decorrelated filters that are designed
based on the orientation of the aggregated channels [20].
In addition to exploiting different filters for pedestrian detec-
tion, some works have explored priors or variants in the
training data to boost the detection performance. For example,
the height of pedestrian is used to separate the training set into
different subsets [18], [21] based on the assumption that pedes-
trians with lower height are more difficult to detect. In [19],
the posterior probability estimations from the previous stage
are employed to partition the training samples into subsets
with different detection difficulties. In addition, the learning
algorithm also plays an important role in FCF framework.
It aims to explore the filtered channel features and recognize
the pedestrian from background. RealBoost [22] is widely
used in existing FCF works [10], [17], [20]. The limitations
of RealBoost are that it is too sensitive to outliers (e.g. due
to annotation errors in the dataset), and it does not have the
capacity to control the generalization of learned model which
often induces severe overfitting.

In this paper, we proposed a novel two-stage pedes-
trian detection framework that is based on the FCF
approach. We explore vector-form1 decorrelated filters which
can combine the advantages of effective feature representa-
tion of decorrelated channel features and low computational
complexity of vector-form filters. Experiments show that the
proposed filters not only achieve better performance than
the matrix-form filters used in existing FCF methods but
also benefit from significant lower computational complex-
ity. In order to further improve the detection performance,
we propose a novel group cost-sensitive BoostLR algorithm
which achieves better generalization for the learned model and
explores the intrinsic variants of negatives selected from the
commonly-used hard negative mining strategy. Specifically,
BoostLR with α-tunable regularization loss [23] is exploited,
in which the sensitivity to outliers varies between the asymp-
totically constant weights of LogitBoost and the exponential
weights of AdaBoost as α changes. In addition, BoostLR for-
mulates the shrinkage strategy that is widely used in boosting

1We group the filters into two categories: matrix-form filters and vector-form
filters. The matrix-form filters have dimension of m×n with m > 1 and n > 1
while vector-form filters have the length of m for different orientations, e.g.
vertical (m × 1), horizontal (1 × m) and diagonal (non-zeros on the diagonals
of m × m matrix).
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Fig. 1. Illustration of the proposed detection framework for: a) training, b) testing. We use identical filters in both the training and testing procedures. The
aggregated channels computed from the input image are used to obtain the filtered channels with vector-form filters. The binary vector-form filters are used
in the first training and testing stage, while learned vector-form decorrelated filters are exploited in the second training and testing stage. During training,
the negatives are grouped from different rounds of hard negative mining process and assigned corresponding costs. In the testing phase, the candidates that are
recognized as positive in the first detection stage serve as inputs to the second detection stage. The final detection results are obtained after Non-Maximum
Suppression (NMS) based on the averaged scores from the first and second detection stages.

family, which improves the generalization of the proposed
algorithm. The negatives that are mined from different rounds
of hard negative mining processing are assigned different costs
which enforces more penalties on the mis-classified harder
negatives.

The main contributions of this paper are summarized as
follows:

1) We proposed a novel two-stage pedestrian detection
framework as shown in Figure 1. Binary vector-form
filters are used in the first stage, and in the second
stage we employ 6 vector-form decorrelated filters (2 for
vertical orientation, 2 for horizontal orientation and 2 for
diagonals) for each of the 10 aggregated feature channels
(3 LUV color channels, 1 gradient magnitude channel,
and 6 channels for Histogram of Oriented Gradients)
as described in [14]. The binary vector-form filters
used in the first stage aims to solve the computation
bottleneck of existing FCF framework and discard easy
negatives. The vector-form decorrelated filters employed
in the second stage focus on exploring local discrimi-
native information to boost the detection performance
while keeping the computational efficiency.

2) We performed extensive studies to show that decor-
related filters that have the same sign elements (i.e.
weighted-sum filters where the coefficients are either
all positive or all negative) show weaker discrimination

than other filters. This important insight explains why
previous FCF methods that adopt such weighted-sum
filters (e.g. Checkerboards and RotatedFilters) achieve
inferior detection performance even when large and
complex filters are employed. Our work is the first
to learn vector-form decorrelated filters from training
samples using the FCF framework. In contrast to exist-
ing decorrelated filters methods [17], [18] that learn
matrix-form decorrelated filters, our proposed method
can extract more discriminative features and has the
advantage of lower computational complexity.

3) We proposed a novel group cost-sensitive BoostLR
learning algorithm for training the pedestrian detector.
The inherent trait of commonly-used hard negative min-
ing strategy is explored to assign different costs for
negatives with different difficulties. These costs are then
employed in the proposed algorithm to provide more
emphasis to the negatives mined from latter rounds that
exhibit higher detection difficulty, and hence is able to
boost the overall detection performance. The proposed
method also benefit from the advantage of BoostLR
framework, where the margin loss can serve as the
regularizer, in order to achieve better generalization.

4) We performed extensive evaluations using the
well-known Caltech, INRIA and CityPersons datasets
to show that our proposed method achieves the best

Authorized licensed use limited to: Nanyang Technological University. Downloaded on November 10,2020 at 11:43:05 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: GROUP COST-SENSITIVE BOOSTLR WITH VECTOR FORM DECORRELATED FILTERS 3

detection performance (i.e. MR2 11.98% on Caltech
dataset, MR 10.71% on INRIA dataset and MR 23.25%
on CityPersons dataset) among all of the state-of-the-art
non-deep learning methods and can run one order
of magnitude faster than classical FCF methods (e.g.
Checkerboards).

The rest of paper is organized as follows. Section II con-
ducts a review of existing top-performing pedestrian detection
methods. The proposed vector-form decorrelated filters and
group cost-sensitive BoostLR algorithm are introduced in
Section III. Section IV presents extensive experimental results
on well-known Caltech, INRIA and CityPersons datasets to
demonstrate the effectiveness and efficiency of the proposed
method over state-of-the-art methods. Finally, Section V con-
cludes the paper.

II. RELATED WORK

The general framework of pedestrian detection can be
decomposed into feature representation and object classifi-
cation. Based on how the features of pedestrian image are
constructed, existing methods can be divided into two families:
hand-crafted [10], [14], [24]–[29] and learned from data [11],
[17], [30]–[32].

For hand-crafted features, HOG (Histogram of Oriented
Gradients) [24] and ChnFtrs (Channel Features) [27] are well
studied in the literature. The HOG feature and its variants have
dominated the task of pedestrian detection for a long time after
its introduction. However, research in recent years shows that
the detection performance are inferior compared to other kinds
of features. For features that are learned from data, the DCNN
(Deep Convolution Neural Network) feature and decorrelated
channel feature have attracted large amount of attention in the
pedestrian detection community. In particular, all of the recent
top-performing approaches [11], [30] on well-known Caltech
pedestrian detection dataset rely on DCNN features.

However, the computational complexity and storage con-
sumption of DCNN feature based methods limit their deploy-
ment in real-world scenarios. The DCNN features, which
are used in Faster R-CNN [33] and SSD [34] detection
framework, often requires very deep model (VGG [35])
which leads to high computational complexity. For example,
VGG-16/19 incurs 15.3/19.6 billion FLOP for input image
resolution 224x224 [36]. To accelerate the detection process,
the DCNN feature based methods typically rely on high-end
discrete GPUs [11], [30], [37] which require high power
supply and active cooling. This limits their deployment on
power constrained embedded systems (e.g. those used for
autonomous driving and robotics [38]). Some works [39]–[42]
have proposed network compression and acceleration for real-
izing deep convolution neural network on embedded plat-
forms. Others have tried to design more compact networks,
e.g. GoogLeNet [43], ResNet [36], MobileNet [44] and
YOLO [45], [46]. However, the computational complexity of
the detection framework that adopts these networks are still
very high. For example, Faster R-CNN for MobileNet with

2Log-average miss rate (MR) on False Positive Per Image (FPPI) ranges of
[10−2, 10−0]. Lower MR represents better detection performance.

input image resolution 600x600 still incurs 30.5 billion FLOP
on the COCO dataset [44]. As such, the DCNN feature based
methods are still not suitable for embedded platforms that have
tight computational resources or employ battery as their main
power source.

The Filtered Channel Feature (FCF) framework have gained
popularity in pedestrian detection community after it was
introduced in [10]. This framework decomposes the detec-
tion process into three correlated steps: aggregated channel
computation, filtering over aggregated channel and object
classification. In the FCF framework, the filters used in
the second step are not restricted to hand-crafted or learned
from data. The decorrelated channel feature was introduced
in [17] where a set of decorrelated filters with size of 5 × 5
are learned from positive training samples for each aggregated
channel [14]. These filters are then applied over corresponding
aggregated channels to obtain decorrelated channel features.
A method called Checkerboards [10] is proposed in which
a naive set of checkerboard patterns are employed as fil-
ters to evaluate whether hand-crafted filters from statistical
information of pedestrian [29] are superior to a naive set
of checkerboard patterns. The same authors later proposed
another method called RotatedFilters [20] in which a set of
carefully tailored filters were designed based on the orienta-
tion of corresponding aggregated channels. The filters from
Checkerboards and RotatedFilters demonstrated superiority in
detection performance but suffer from high computational
complexity due to the employment of large number of fil-
ters (i.e. 61 filters per channel) [10] or the need to filter
over high resolution aggregated channels (i.e. one upsampled
octave for input image and no downsampling for aggregated
channels) [20]. To solve the high computational complexity in
filtering step, [18] proposed to learn small multi-scale matrix-
form decorrelated filters i.e., size of 2 × 2 and 3 × 3. The
binary vector-form filters are explored in [19] and are shown
to achieve notable improvement in the detection performance.

In addition to improve the detection performance from
the perspective of feature extraction, some works have
attempted to explore the variants in the training data. A group
cost-sensitive Adaboost is proposed in [21] which takes advan-
tage of the fact that training samples with low resolution are
often difficult to classify. The positive samples are divided into
low and high resolution set and more penalties are assigned
to mis-classified low resolution samples. However, this par-
tition is often influenced by the annotation errors, which are
common in the large scale public datasets with some examples
in Figure 2(b). In [18], a cost-sensitive learning algorithm with
fused loss is proposed to explore the variants in training sam-
ples and alleviate the influence of annotation errors. This work
has no discrimination between positives and negatives when
assigning cost. However, the mis-classified positives should
have larger cost than the negatives since missing detections
(i.e. false negatives) are harder to recover. The work in [19]
proposed to assign larger cost for mis-classified positives and
divide the negatives into several sets. But the partition of neg-
atives in [19] is based on the posterior probability estimation
from previous detection stage which implies that it can only be
used in a multi-stage detection framework. This requirement
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Fig. 2. a) Visualization of learned vector-form decorrelated filters (Brighter
pixels mean for positive numerical value while blue pixels mean negative
numerical value. Best viewed in color), b) Examples of erroneous annotations
from Caltech dataset.

restricts the first detection stage from taking advantage of
variants in the training data. Furthermore, there is still a
wide gap in the detection performance between top-performing
FCF methods and deep learning methods which prevents their
applicability in real-world scenarios.

The proposed detection framework in this paper differs from
existing works in both feature representation and learning
strategy. In our work, we exploit vector-form filters instead
of matrix-form filters used in [10], [17], [18], and [20].
The vector-form filters are also employed in [19], but these
are hand-crafted binary filters. Unlike [19], the vector-form
filters used in the second stage of the proposed framework
are decorrelated filters that are learned from training data.
In contrast to the cost-sensitive strategies used in [18], [19],
and [21], we partition the negatives into different subsets
based on the commonly-used hard negative mining process.
This strategy explores the intrinsic benefits for negatives with
different detection difficulties. To the best of our knowledge,
our work is the first to adopt this strategy for cost-sensitive
learning. Compared with other boosting-like algorithms [18],
[19], [21], the proposed method allows for the control of
regularization strength and robustness to outlier with the link
function and binding function respectively. This is important
when training the detector since the training data often have
some annotation errors which would affect the performance of
trained detector. In such scenarios, the robustness to outliers
would play an important role to reduce the effects of outliers
on the learned model. Furthermore, in real-world scenarios,
different kinds of mis-classification have different costs. For
example, in autonomous driving, a missing detection of pedes-
trian may lead to fatal accident which means that this kind
of missing detection should be associated with a higher cost
when training the detector. Other boost-like algorithms often
focus on only a single aspect (e.g. cost-sensitive in [21]) while
the proposed method can handle multiple aspects at the same

time using several hyperparameters (i.e. by using α to tune
robustness to outliers, σ to control regularization strength and
C∗ for various mis-classifications).

III. PROPOSED FRAMEWORK

In this section, we present the proposed framework from
the perspective of feature representation and learning strategy.
Figure 1(a) and Figure 1(b) illustrate the training and testing
procedure of the proposed framework. It can be observed
that the aggregated channels are first computed from input
image. The aggregated channels consist of 10 channels of the
same dimension, including 3 LUV color channels, 1 gradient
magnitude channel, and 6 channels for Histogram of Oriented
Gradients [14]. The filtered channels are then obtained from
the aggregated channels using binary vector-form filters in
the first stage and learned vector-form decorrelated filters
in the second stage. It is worth noting that identical filters
are used in the corresponding stages of training and testing
procedure. During training, the negatives selected from dif-
ferent rounds of hard negative mining process are assigned
different costs. The classifier is then trained using the proposed
learning algorithm with filtered channel features and group
costs at corresponding training stage. In the testing phase,
the pedestrian candidates that passed both detection stages
are classified as pedestrian and the confidence score is the
combination of scores from the two detection stages. The
final detection results are then obtained after Non-Maximum
Suppression (NMS).

In Section III-A, we will introduce the proposed vector-form
decorrelated filters that are able to extract more discriminative
features than existing methods. Next, in Section III-B, we will
present the proposed group cost-sensitive BoostLR (Boosting
with Loss Regularization) learning algorithm which explores
the variants in hard negatives and alleviates the influence of
annotation errors in the training data.

A. Vector Form Decorrelated Filters

In order to take advantage of good feature representation
of decorrelated filters and the computational efficiency of
vector-form filters, we propose to learn vector-form decor-
related filters. The vector-form filters can be characterized
by their dimensions and orientations. e.g. vertical filter with
dimension of m × 1, horizontal filter with dimension of 1 × m
and diagonal filter (non-zeros on the diagonals of m × m
matrix). Different vector-form filters can extract information
from specific orientation of local region. For example, the ver-
tical discriminative information can be obtained using vertical
vector-form filters. To fully explore the local information,
we propose to learn vector-form decorrelated filters in vertical,
horizontal and diagonal orientations. The covariance matrix
��� is first computed on the set of patches extracted from
each aggregated channel [17]. Then the eigen-vector from
the eigen-decomposition of ��� are employed as decorrelated
filters. Consequently, the number of vector-form decorrelated
filters for a specific orientation (e.g. vertical orientation) is
equal to the length of filter. For instance, there are m learned
vector-form decorrelated filters if the length of filter is m.
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Some examples of learned vector-form decorrelated filters
that we have investigated are shown in Figure 2(a). These
include the vertical and horizontal filters with length of 2,
diagonal filters with length of 2, and vertical and horizontal
filters with length of 3. The corresponding eigen-values of the
decorrelated filters decrease from upper to lower row.

The filters in the upper row of Figure 2(a) are weighted
sum of pixels (e.g. [0.7141, 0.7001])3 while filters in lower
row are weighted discrepancy of pixels (e.g. [0.6934, -
0.7205]). Similar phenomenon has also been observed in the
decorrelated filters used in LDCF [17] and [18] where the
decorrelated filter that corresponds to largest eigen-value has
same sign coefficients. In order to better describe the filters,
we partition the decorrelated filters into two subcategories:
weighted-sum filter where the sign of filter coefficients are
always the same, and weighted-discrepancy filter where the
sign of filter coefficients are not the same. The decorrelated
filters in upper row of Figure 2(a) are weighted-sum filter
while filters in lower row are weighted-discrepancy filter. Our
investigation on Caltech dataset in Section IV-B shows that the
weighted-discrepancy filters have better discrimination capa-
bility than weighted-sum filters. When weighted-discrepancy
and weighted-sum decorrelated filters are exploited together,
the detection performance is slightly better than the case
with weighted-sum filters, but is still much inferior compared
with the case of weighted-discrepancy filters as illustrated
in Figure 4(a). We will provide detail discussion of these
results in Section IV-B. Therefore, only weighted-discrepancy
vector-form decorrelated filters are employed in the second
detection stage of the proposed framework.

B. Group Cost-Sensitive BoostLR

It has been well recognized that the regularization is impor-
tant to assure good generalization of a classifier. Classical
regularization often enforces a cost on classifier complexity
through constraining parameters. Masnadi-Shirazi and Vas-
concelos [23] finds that the margin losses can also serve as
regularizers of posterior class probability estimations. In this
section, we first introduce the boosting algorithm with tunable
loss regularization (BoostLR). Then present our proposed
group cost-sensitive BoostLR.

1) Boosting With Loss Regularization (BoostLR): The clas-
sifier H(x) is defined to map a feature vector x to a class label
y and can be expressed as,

H (x) = sgn[p(x)] (1)

where p(x) is the classifier predictor and sgn refers to the
operation that retrieves the sign. Given a non-negative loss
L(x, y), the optimal predictor p∗(x) can be obtained by
minimizing the expectation of the loss function, i.e. risk,

R(p) = EX,Y [L(p(x), y)] (2)

In practical, the optimal predictor is estimated by minimizing
an empirical risk of Eq. 2. The empirical risk from a set of
training samples (xi , yi )

N
i=1, where x = (x1, . . . , xd)T ∈ R

d

3The element values may be negative (e.g. [-0.7092, -0.7050]) in some
learned vector-form decorrelated filters.

is the feature vector for each training sample and y ∈ {−1, 1}
is the corresponding label, can be written as

Remp(p) = 1

N

∑
i

L(p(xi ), yi ) (3)

Learning from finite samples can easily lead to over-fitting.
One method to alleviate the problem of over-fitting is to
enforce a cost on classifier complexity, by constraining para-
meters (e.g. adding the norm of parameters as penalty term).
Another way is to use a margin loss Lφ(y, p(x)) = φ(yp(x))
which assigns a penalty to correctly classified examples that
are close to the decision boundary. In [23], it is demonstrated
that the margin losses can themselves serve as regulariz-
ers of posterior class probability and the generalization of
learned classifiers can be controlled with a combination of
link function f ∗

φ (η) defined in Eq. A.A2 (to determine the
regularization strength) and binding function βφ(v) defined
in Eq. A.A10 (to determine the robustness to outliers due
to annotations errors in the dataset). The details of proof are
shown in Appendix A. Boosting with weights rule in Eq. A.A9
is denoted Boosting with Loss Regularization (BoostLR).

In boosting family, the exponential loss (i.e. φ(v) = e−v )
and logistic loss (i.e. φ(v) = log(1+e−v)) are commonly-used
loss functions. Based on the weights rule of exponential loss
and logistic loss in Eq. A.B1 and Eq. A.B2, a tunable regu-
larization loss is proposed in BoostLR [23] and its derivative
can be written as

φ�
σ (v) = −(1 − e

v
σ

1 + e
v
σ

)
1 − α

2 − 3α
(e−α v

σ + eα v
σ ), α ∈ [0,

1

2
]
(4)

where σ = μ
ξ+1 , α = ξ

1+ξ , 0 ≤ ξ ≤ 1 and 0 < 1
μ ≤ 1

is the shrinkage factor. As α varies, the φ�
σ (v) interpolates

between the derivative of logistic loss and exponential loss.
Hence, the loss φσ (v) is called α-tunable regularization loss in
BoostLR [23]. Appendix B details the derivation of Eq. 4 from
exponential loss and logistic loss. The weight update functions
of α-tunable regularization loss with different α values are
shown in Figure 3. σ is set to 1

ξ+1 in the plot. It can be
observed that the weight function becomes an update rule of
exponential loss when α is 0.5 and of logistic loss when α
is 0.

In GradientBoost framework, one can design a strong clas-
sifier by combining a set of weak classifiers and optimizes this
problem using the gradient descent in weak classifier space W .
Let p(x) = G(x) and define G(x) as

G(x) =
T∑

t=1

g(t)(x) (5)

With φ(v) as loss, the empirical risk on training set can be
written as,

Remp(G) = 1

N

N∑
i=1

φ(yi G(xi )) (6)

Using GradientBoost framework [47], the predictor can be
updated at each iteration t,

G(t)(x) = G(t−1)(x) + g(t)(x) (7)
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Fig. 3. Weight function of the α−tunable regularization loss, for different
values of α.

where g(t)(x) is the gradient of Remp(G) in weak classifier
space W and can be expressed as

g(t)(x) = arg max
g

N∑
i=1

−yiφ
�(yi G

(t−1)(xi ))g(xi )

= arg max
g

N∑
i=1

yiw
(t)(xi )g(xi ) (8)

where

w(t)(xi ) = −φ�(yi G
(t−1)(xi )) (9)

Substituting the derivative of loss function φ�(yi G(t−1)(xi ))
with Eq. A.A9, Eq. 9 can be rewritten as

w(t)(xi ) = −(1 − [ f ∗
φ ]−1(yi G

(t−1)(xi )))β
�
φ(yi G

(t−1)(xi ))

(10)

Boosting with these weights updating rule is denoted Boosting
with Loss Regularization (BoostLR). The weight updating rule
of α-tunable regularization loss for boosting learning can be
obtained by substituting φ�(yi G(t−1)(xi )) using Eq. 4 as

w(t)(xi ) = (1 − e
yi G(t−1)(xi )

σ

1 + e
yi G(t−1)(xi )

σ

)
1 − α

2 − 3α

(e−α
yi G(t−1)(xi )

σ + eα
yi G(t−1)(xi )

σ ) (11)

2) Group Cost-Sensitive BoostLR: The weight update rule
using Eq. 4 is cost-insensitive and does not incorporate prior
knowledge of training samples as the weight is determined
only by the margin v = yG(x). Suitable prior knowledge
can be exploited to train a better classifier. For example,
the height of training sample is used as prior knowledge
in [18] and [21] based on the assumption that samples with
lower height are usually more difficult to recognize. However,
the detection difficulty of samples can be influenced by many
factors, e.g. the occlusion level. Taller training samples with
large degree of occlusion may be more difficult to recognize
than un-occluded samples with low height. As such, the cost-
sensitive strategy in [18] and [21] may not be reliable. In the

proposed approach, the non-pedestrian samples that are mined
from different rounds of hard negative mining process show
different detection difficulties. The detection difficulty of neg-
atives can be explored to pay more attention to the harder
negatives. Suppose there are K rounds in hard negative mining
processing and Sk denote the set of negatives mined from k-th
round. The group cost-sensitive loss can be expressed as,

L(x, y) =

⎧⎪⎨
⎪⎩

0, if H (x)= y

C f n, if y =1, H (x)=−1

Ck
f p, if y =−1, H (xSk )=1, k =1, . . . , K

(12)

where C f n is the cost for mis-classifying a pedestrian as non-
pedestrian. Ck

f p is the cost for mis-classifying a non-pedestrian
as pedestrian in the k-th round of hard negative mining. In
object detection, it is essential to ensure that objects are not
missed, as missing detections for objects are very difficult to
recover. As a result, the cost for false negatives should be
larger than false positives which means that Ck

f p < C f n . We
set C f n = 1 and then search the optimal value for Ck

f p. The
corresponding update rule for group cost-sensitive BoostLR
can be written as,

φ�(C∗v) =−C∗(1− e
C∗v
σ

1 + e
C∗v
σ

)
1−α

2−3α
(e−α C∗v

σ + eα C∗v
σ ) (13)

where C∗ is the cost for different groups defined in Eq. 12.
In contrast to cost-insensitive BoostLR weight update rule,
Eq. 13 assigns larger weight on the sets with higher cost which
imposes that the learning algorithm pays more attentions to
harder training samples. The proposed two stage learning
framework is presented in Algorithm 1.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the detection performance
and execution time of the proposed method on well-known
Caltech, INRIA and CityPersons pedestrian detection datasets.
To ensure a fair comparison for the execution time, we imple-
mented all the methods on the same platform, i.e., 3.5GHz
Intel Xeon E5-1650 CPU with single thread execution.
We have not relied on GPUs in our experiments.

A. Experiment Setup

1) Caltech Dataset: In Caltech dataset [48],4 the training
data is augmented by extracting one of every 3 frames instead
of every 30 frames from the raw videos following the approach
in [10]. We refer to this training set as Caltech10x training
set. There are 42,782 images in the training set for hard
negative mining. The Caltech test set consists of 4024 images
which includes 1014 positive samples. The evaluation metric is
log-average miss rate (MR) on False Positive Per Image (FPPI)
in [10−2, 10−0] under Reasonable setup (pedestrians that are
at least 50 pixels tall and at least 65% visible [11]). In addition,
we also tested our trained model on the new annotations of
Caltech test set provided by [20], which has corrected some
errors in the original annotations. We denote the results of the
original and new annotations as MR and MR_N respectively.

4www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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Algorithm 1 Group Cost-Sensitive BoostLR for Pedestrian
Detection
Input: Training set (xi , yi )

N
i=1, a set of weak learner

{gi(x)}M
i=1, number of training iteration T , and number of

hard negative mining round K ,
Output: Detector H (x)
1: Obtain group cost C f n and [C1

f p, . . . , C K
f p]s1 for the first

stage
2: Set G(0)

1 (x) = 0, w
(1)
i = 1/N, i = 1, . . . , N ;

3: for t1 = 1 to T do
4: Choose optimal weak learner g(t1)

1 (x) based on weight
w

(t1)
i

5: Update predictor G(t1)
1 (x) = G(t1−1)

1 (x) + g(t1)
1 (x);

6: Update weights through Eq. 13;
7: end for
8: Obtain group cost C f n and [C1

f p, . . . , C K
f p]s2 for the second

stage
9: Set G(0)

2 (x) = 0, w
(1)
i = 1/N, i = 1, . . . , N ;

10: for t2 = 1 to T do
11: Choose optimal weak learner g(t2)

2 (x) based on weight
w

(t2)
i

12: Update predictor G(t2)
2 (x) = G(t2−1)

2 (x) + g(t2)
2 (x);

13: Update weights through Eq. 13;
14: end for
15: return detector H (x) = sgn[G(t1)

1 (x) + G(t2)
2 (x)]

The model size used in the proposed method is 128 × 64.
For each stage, three rounds of hard negative mining (64, 256,
1024, 5120 trees respectively) are used and 150,000 negatives
are added to the training set in each round. During decision
tree learning, we randomly selected 1/16 features from a
large feature pool and the depth of the decision tree is
limited to 6 in the first stage, and 8 in the second stage.
The strides of both sliding window and aggregated channel
shrinkage factor are 4, and each image is upsampled by one
octave. The bin size is set to 1 when computing aggregated
channels. The C f n is set to 1 and an arithmetic sequence is
employed ([C1

f p, . . . , C K
f p, 1]) when searching optimal cost for

negative subsets in each training stage from cross-validation
experiments. For parameter σ and α, we set σ = 5

ξ+1 and
select optimal α from cross-validation experiments.

2) INRIA Dataset: In INRIA dataset [24],5 there are
614 positive images and 1218 negative images in the training
set. The trained model is evaluated on 288 testing images
using MR on FPPI ranges of [10−2, 10−0]. For each stage,
three rounds of hard negative mining (32, 128, 512, 4096 trees
respectively) are used and the number of decision tree is
limited to 512 in the second stage. 11,000 negatives are added
in each hard negative mining round in both stages. Due to
the small scale of training image in INRIA dataset, the max
depth of decision tree is limited to 2 in the first stage and 3 in
the second stage. The bin size is set to 4 when computing
aggregated channels. Other settings are same with Caltech
dataset.

5http://pascal.inrialpes.fr/data/human/

Fig. 4. The detection performance (MR) of different types of vector-form
decorrelated filters with respect to weighted-sum filter, weighted-discrepancy
filter and their combinations on Caltech dataset.

3) CityPersons Dataset: The CityPersons dataset [49] is
built upon the Cityscapes dataset [50], in which the images
are collected from multiple cities across Europe. In our exper-
iments, we use the original training and validation split which
comprises of 2975 and 500 images respectively. Following
the evaluation setting in [49], the MR on FPPI ranging
between [10−2, 10−0] across different occlusion levels is used
to evaluate the trained model, which includes four setups:
Reasonable (pedestrian height ranges between [50, +∞] pixels
and visibility locates in [0.65, +∞]), Small (pedestrian height
ranges between [50, 75] pixels and visibility locates in [0.65,
+∞]), Heavy (pedestrian height ranges between [50, +∞]
pixels and visibility locates in [0.2, 0.65]) and All (pedestrian
height ranges between [20, +∞] pixels and visibility locates
in [0.2, +∞]). The model size of the proposed method for
CityPersons dataset is 128 × 64 and five rounds of hard
negative mining (64, 256, 2014, 2048, 4096, 6144) are used.
The maximum depth of decision tree are set to 8 in both stages.
Other settings are the same with Caltech dataset.

B. Ablation Experiments

In this subsection, we conduct ablation experiments on
Caltech dataset.

1) Effect of Weighted-Sum and Weighted-Discrepancy
Vector-Form Decorrelated Filters: As indicated in
Section III-A, the learned vector-form decorrelated filters can
be partitioned into weighted-sum and weighted-discrepancy
filters as depicted in Figure 2(a). In order to investigate
the influence of these two kinds of filters on detection
performance, we conduct experiments on Caltech dataset.
The detection performance with different vector-form
decorrelated filters is illustrated in Figure 4(a). It can be
observed that the MR corresponding to weighted-sum filters
is much higher than weighted-discrepancy filters. When
the weighted-sum and weighted-discrepancy filters are
used together, the MR is still much higher than the case
of only using weighted-discrepancy filters. This implies
that the weighted-sum filters have a negative impact on
the detection performance. In order to further verify our
assumption, we re-trained the LDCF detector based on the
setting in [17]. We change the max depth of decision tree
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TABLE I

DETECTION PERFORMANCE (MR) WITH DIFFERENT STRATEGIES
ON CALTECH DATASET. �INDICATES THAT CORRESPONDING

STRATEGY IS ADOPTED

from 5 to 7 and conduct experiments with and without the
weighted-sum decorrelated filters which correspond to the
largest eigen-value. The MR without weighted-sum filter is
23.68% while the MR with weighted-sum filter is 25.92%.
This further demonstrates that weighted-sum filters fail to
capture discriminative information from local region and
negatively impact the detection performance. Since the
weighted-sum filters are widely used in existing FCF methods
(e.g. Checkerboards [10] and RotatedFilters [20]), our finding
also explains why existing FCF methods achieve inferior
detection performance even though more complex filters
are employed. Therefore, the weighted-sum filters are not
employed in the proposed method.

2) Effect of Proposed Group Cost-Sensitive BoostLR and
Vector-Form Decorrelated Filters: In this work, we improved
the detection performance by using novel decorrelated features
and a new learning strategy. In order to evaluate the influence
of each modification on the detection performance, we perform
experiments on Caltech dataset. The experiment results are
shown in Table I. The RealBoost and binary vector-form
filters are employed as the baseline in these experiments.
From the table, it can be observed that the MR is very high
if the proposed learning strategy is not employed (i.e. when
RealBoost is used instead of the proposed learning strategy).
This is mostly due to the exponential loss of RealBoost which
is too sensitive to outliers and has no parameter to control
the regularization strength of learned classifier. One can also
observe that much lower MR can be obtained if only the
proposed group cost-sensitive BoostLR is employed. This
demonstrates the advantage of the proposed learning strategy
over RealBoost. Compared with binary filters used in [19],
the proposed vector-form decorrelated filters achieve lower
MR regardless of the adopted learning strategy. This implies
that the proposed decorrelated filters can effectively explore
the local region and extract better discriminative features.
These observations show that both the proposed learning
strategy and vector-form decorrelated filters contribute to
significant improvement in the detection performance.

3) Effect of Length of Vector-Form Decorrelated Filters:
The length of vector-form filter determines the scope of
discriminative information extraction. In order to find the
optimal length of vector-form filters for pedestrian detection,
we conduct experiments to evaluate the detection performance
when the length of vertical and horizontal vector-form filters
are progressively increased. Please note that the diagonal
vector-form filters with length of 2 are always employed when
conducting experiments. For each type of vector-form decorre-
lated filter, only the decorrelated filter corresponding to second

Fig. 5. a) The detection performance (MR) of varying length of vector-form
decorrelated filters, and b) detection performance (MR) of varying max depth
of decision tree with different learning strategies on Caltech dataset.

Fig. 6. a) The spatial distribution of features selected by the second stage
detector on Caltech dataset. Brighter pixels indicate that the features are
selected in high frequency and blue pixels correspond to low frequency.
b) Correlation map illustration in aggregated channel. The pixel of interest
is surrounded by several brighter pixels. The brighter pixels mean higher
correlation while the blue pixels represent lower correlation. Best viewed in
color.

largest eigen-value is selected since it is weighted-discrepancy
filter. The MR with varying length of vector-form decorrelated
filters is shown in Figure 5(a). It can be observed that the
lowest MR is achieved when the max length of vector-form
filters is 3. In addition, the MR increases rapidly when the
length of vector-form filters is larger than 3. This is mostly
due to the fact that the decorrelated filters with length of 4
and 5 collect information from larger local region which has
less correlation. In order to demonstrate this, we provide the
following two maps: spatial distribution of feature selected
by the second stage detector as shown in Figure 6(a), and
correlation map illustration in aggregated channel from pos-
itive training samples as shown in Figure 6(b). The pixel
of interest in Figure 6(b) is surrounded by several brighter
pixels, especially in the vertical and horizontal orientations.
One can observe that the features located in the middle region
of pedestrian are selected in high frequency. The correlation
map of feature from high frequency region shows that high
correlation only exists for adjacent pixels. Specifically, ver-
tical and horizontal adjacent pixels have higher correlation
than diagonal ones. This is reasonable as the distance from
diagonal adjacent pixels is larger than vertical and horizontal
ones. These observations explain why higher MR is achieved
when the length of vector-form decorrelated filters is larger
than 3.
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TABLE II

AVERAGE EXECUTION TIME PER FRAME (SECONDS) AND DETECTION PERFORMANCE (MR) OF FCF METHODS ON CALTECH DATASET. NOTE THAT
THE EXECUTION TIME IS OBTAINED BASED ON MATLAB/C++ IMPLEMENTATION RUNNING ON A WORKSTATION WITH SINGLE THREAD

4) Effect of Max Depth of Decision Tree With Group
Cost-Sensitive BoostLR and RealBoost: The evaluation of
the max depth of decision tree is often ignored in exist-
ing FCF based methods, where shallow decision trees are
often employed. For example, max depth of decision tree is
5 and 4 in LDCF [17] and Checkerboards [10] respectively.
In order to better understand the influence of the decision
tree, we conduct experiments with varying max depth of
decision tree using the proposed group cost-sensitive BoostLR
and RealBoost respectively. Figure 5(b) shows the MR with
different max depth of decision tree on Caltech dataset. It can
be observed that MR with RealBoost increases rapidly when
the depth is larger than 6, in which overfitting is observed.
This implies that the RealBoost is not suitable with deeper
decision tree due to the lack of regularization term that plays
an important role in controlling the generalization of learned
classifier. When the proposed learning strategy is employed,
one can observe that the MR continues to decrease when
the max depth is larger than 6. This is because the proposed
learning strategy can control the generalization ability of the
learned classifier by link function (the regularization strength)
and binding function (the robustness to outliers) [23]. These
experiment results demonstrate the superiority of our proposed
group cost-sensitive BoostLR over RealBoost.

C. Comparisons With State-of-the-Art Methods on Caltech
Dataset

In [19], two acceleration strategies: Selective Classification
and Selective Scale Processing are proposed and have been
demonstrated to notably improve the detection speed while
maintaining robustness. We incorporated these two accel-
eration strategies into our proposed framework which are
indicated as Our_Acc in Table II. With these acceleration
strategies, the proposed method obtained further gain in detec-
tion performance (MR reduces from 12.10% to 11.98%) and
speed (execution time reduces from 0.704 to 0.562 second per
image). In the remaining paper, only results of the proposed
method with acceleration strategies are reported.

Figure 7 provides the comparison of detection perfor-
mance with state-of-the-art methods on Caltech benchmark.
It can be observed that the proposed approach achieves the
best detection performance among non-deep learning meth-
ods. Compared to existing FCF methods, the MR of our
method is significantly lower, i.e., 11.98% whereas MR of
Checkerboards [10], MS-MFDF [18] and B-VFF [19] are
18.47%, 14.63% and 14.62% respectively. Similar results
can be observed when the evaluations are conducted on the

Fig. 7. Detection performance comparisons with state-of-the-art methods on
Caltech dataset. The numbers indicate the value of MR (MR_N ).

new annotations of Caltech test set. Compared to the filters
employed in Checkerboards and MS-MFDF, the proposed
vector-form decorrelated filters are much simpler but achieve
better detection performance. This demonstrates the effective-
ness of the proposed vector-form decorrelated filters and the
group cost-sensitive BoostLR learning strategy.

The run-time comparison of proposed method and state-
of-the-art FCF methods are reported in Table II. It is note-
worthy that we only conduct comparisons with the methods
that have released their trained model so that we can run
these methods on same platform. It can be observed that
the ACF [14] achieves the lowest run-time since there is no
filtering step in ACF. The run-time of proposed method is
one order of magnitude lower than RotatedFilters [20] and
Checkerboards [10], while achieving much better detection
performance. Although MS-MFDF and B-VFF can run faster
than the proposed method, the MR of these two methods are
about 2.6% higher than ours. These results clearly demon-
strate that the proposed methods can achieve better trade-off
between detection performance and run-time than state-of-the-
art pedestrian detection methods.

D. Comparisons With State-of-the-Art Methods on INRIA
Dataset

The detection performance of proposed method and
the state-of-the-art methods on INRIA dataset are shown
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TABLE III

AVERAGE EXECUTION TIME PER IMAGE (SECONDS) AND DETECTION
PERFORMANCE (MR) ON INRIA DATASET. NOTE THAT THE

EXECUTION TIME IS OBTAINED BASED ON MATLAB/C++
IMPLEMENTATION RUNNING ON A WORKSTATION

WITH SINGLE THREAD

in Figure 8. One can observe that our proposed method
achieves the best detection performance (MR is 10.71%)
among non-deep learning methods. Compared with ACF [14]
and LDCF [17], the proposed method achieves 6.57% and
3.08% lower on MR respectively. The proposed method
still achieves better performance than MS-MFDF [18] and
B-VFF [19]. The average execution time of several FCF based
methods on INRIA dataset are shown in Table III. It can
be observed that the proposed method can run much faster
than LDCF [17] and MS-MFDF [18]. The detection time of
B-VFF is a little lower than proposed method due to the
use of low complexity binary filters. These results further
demonstrate the effectiveness and efficiency of the proposed
detection framework.

E. Comparisons With FCF Based Methods on CityPersons
Dataset

Since CityPersons is a new pedestrian detection dataset,
there are no previously reported detection results on this
dataset using FCF detection framework. In order to compare
with existing FCF based methods, we conduct experiments
using existing FCF based methods which includes ACF [14],
LDCF [17] and Checkerboards [10]. We mostly used the
default settings when training ACF, LDCF and Checkerboards
detector When training Checkerboards on CityPersons dataset,
we choose to set the maximum size of filter to 4×3, resulting
in a total of 39 filters. The detection performance and running
time of ACF, LDCF, Checkerboards and proposed method are
shown in Table IV. It can be observed that the proposed
method achieves much lower MR on all four evaluation
setups. It can also be observed that Checkerboards obtains a
slightly higher MR value than ACF and LDCF, which implies
that utilizing a large amount of Checkerboard pattern filters
does not contribute to achieving better detection performance.
The detection time of Checkerboards is about 6.8 times
more than our method as more filters are employed. These
results demonstrate the general applicability of the proposed
method.

F. Comparisons With Deep Learning Based Methods on
Caltech and INRIA Datasets

For Caltech dataset, as shown in Figure 7, F-DNN (Fused-
DNN) [30] which fuses several deep convolutional neural
networks achieves the best detection performance. For INRIA
dataset, the RPN+BF [11] that combines a region proposal

TABLE IV

AVERAGE EXECUTION TIME PER IMAGE (SECONDS) AND DETECTION
PERFORMANCE (MR) ON CITYPERSONS DATASET. NOTE THAT THE

EXECUTION TIME IS OBTAINED BASED ON MATLAB/C++
IMPLEMENTATION RUNNING ON A WORKSTATION

WITH SINGLE THREAD

Fig. 8. Detection performance (MR) comparisons with state-of-the-art
methods on INRIA dataset.

network and a boosted forest obtains the lowest MR as
depicted in Figure 8. Although RPN+BF and F-DNN obtain
better detection performance than the proposed approach,
their performance heavily relies on very deep models (e.g.
VGG [35]) and requires additional operations to refine the
detection results from the detection framework of Faster
R-CNN [33] (e.g. RPN+BF) and SSD [34] (e.g. F-DNN).
In fact, the MR of using only RPN in RPN+BF and SSD
in F-DNN are 14.90% and 13.06% respectively, which are
inferior to our proposed method (i.e 11.98%). Due to the
high computational complexity of deep convolution neural
network, the deep learning based methods (i.e. VGG network)
require high-end discrete GPUs (e.g. NVIDIA Titan X) to
accelerate the detection process, which has been reported to
be more than 60X faster than the dual-core Xeon CPU.6 Even
with the powerful GPU, the F-DNN is reported to run at
only about 0.3 second per image on Caltech dataset which
cannot meet the real-time requirements [30]. As highlighted
in [37], the run-time of deep learning based object detec-
tion methods is more than 10X longer when executed on
CPU.

In order to compare the computational complexity of
the proposed method and deep learning based methods,

6https://github.com/jcjohnson/cnn-benchmarks
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Fig. 9. Snapshot of pedestrian detection comparison video in real-world
scenario. Full video is found here: https://youtu.be/otoK5hlOOFk.

we calculate the number of floating-point operations in both
methods. It is worth noting that the floating-point comparisons
in the decision tree are also calculated as they are the main
operations in the classification step of the proposed method.
The proposed method requires about 1.1 billion FLOP. The
VGG-16 network is employed to calculate the FLOP of DCNN
as it is the backbone network in many deep learning based
methods (e.g. RPN+BF [11] and F-DNN [30]). The FLOP of
VGG-16 network for input image resolution 224 × 224 is
15.3 billion [36]. For Caltech dataset, the image size is
480 × 640 and the estimated complexity of VGG-16 network
on Caltech image is 93.7 billion FLOP. Hence, the complexity
of deep learning based pedestrian detection method is at least
85X higher than the proposed method. It is worth mentioning
that the computational complexity of deep learning based
methods is only considered for the backbone network and
does not take into account the complexity of other steps,
e.g. proposal generation and classification in the detection
framework of Faster R-CNN. Besides, this complexity also
assumes that the input image is not upsampled although the
deep learning based methods often increase the resolution
of input image to obtain better detection performance [37].
For example, the input image is first upsampled by a factor
of 1.5X prior to feeding it into region proposal network in
RPN+BF [11].

YOLO [46] is a fast detection framework and can run at
40 FPS with powerful GPU (e.g. NVIDIA Titan X). However,
the FLOP of YOLO v2 for input image resolution 608 × 608
is about 62.94 billion 7 which is about 57X higher than the
proposed method. We run YOLO v2 in our workstation using
single thread and it requires about 12 seconds to process a
single image which will not meet the real-time requirements
of most applications.

G. Detection results comparisons of FCF methods in
real-world scenario

In order to compare the detection performance of exist-
ing FCF methods (e.g. ACF, LDCF and Checkerboards) in
real-world scenario, we undertook a field trial in our university

7https://pjreddie.com/darknet/yolo/

campus where the camera is mounted on a moving vehicle.
Fig. 9 shows a snapshot of the video. The video resolution
is 960 × 540 and the FPS (Frame Per Second) is obtained
when executing the pedestrian detection algorithms on 3.5GHz
Intel Xeon E51650 CPU with only a single thread. It can be
observed from the video that the proposed method obtains
tighter bounding boxes around pedestrians than ACF and
LDCF, and can recognize the partially occluded pedestrians
while ACF and LDCF fail to detect pedestrians in some
cases. Although Checkerboards can obtain tight bounding
boxes around pedestrians, it induces much more false alarms
than the proposed method, ACF and LDCF, especially in
cluttered background regions. The FPS is shown on the top
right of each sub-screen. We can observe that the FPS of
the proposed method is lower than ACF and LDCF, but is
much higher than Checkerboards which highlights the high
computational complexity of Checkerboards. In real-world
scenarios, the occluded pedestrians are common. This implies
that the ACF and LDCF are not suitable for real-world
deployment. Checkerboards can recognize occluded pedestrian
but its high computational complexity will limit its poten-
tial deployment on platforms with constrained computational
resources (e.g. embedded systems employed in autonomous
vehicle).

V. CONCLUSION

We proposed a robust and runtime-efficient two-stage pedes-
trian detection framework. The proposed method utilizes
vector-form decorrelated filters to extract more discrimina-
tive features and a group cost-sensitive BoostLR learning
algorithm to explore the variants of negatives mined from
commonly-used hard negative mining strategy in order to
improve the detection performance. The learned vector-form
decorrelated filters are employed in the second detection
stage to capture more details from local regions while at
the same time benefiting from low computational complexity
compared to the conventional matrix-form filters. The intrinsic
variants in negatives are explored through employment of
group cost-sensitive BoostLR learning algorithm. The exper-
iment results show that the proposed method achieves best
detection performance among non-deep learning methods on
well-known Caltech, INRIA and CityPersons benchmarks and
can run one order of magnitude faster than classical FCF
methods (e.g. Checkerboards).

Even though the proposed method achieves better per-
formance than existing FCF based methods, there are still
opportunities to further improve its performance. In particu-
lar, the proposed method uses decorrelated filters to extract
features which can be considered as local features due to
the limitation of filter size. The local features cannot capture
the relationship of body parts (e.g. head and foot) that are
not adjacent, which may limit the potential of the proposed
framework. However, the global features cannot be extracted
by simply using larger decorrelated filters as information from
larger distance has less correlation. In order to further improve
the detection performance of the proposed method, we plan to
explore methods for effectively extracting global features in
our future work.
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APPENDIX A
PROOF THAT MARGIN LOSSES ACT AS REGULARIZERS OF

POSTERIOR CLASS PROBABILITIES

In [23], the predictor p(x) can be expressed as a composi-
tion of two functions,

p(x) = f (η(x)) (A.A1)

where η(x) = PY |X(1|x) is the posterior probability func-
tion and f : [0, 1] → R is a link function that
maps the posterior class probabilities η(x) to classifier
predictions p(x) [22], [51], [52]. The problem of learning opti-
mal predictor p∗(x) can be decomposed into the sub-problem
of learning optimal link function f ∗(η(x)) and estimating
the posterior function η(x). Since f ∗(η(x)) can usually be
determined analytically, this can be estimated as η(x), when-
ever f ∗(η(x)) is one-to-one mapping. f ∗

φ (η) that respects the
loss function Lφ(y, p(x)) = φ(yp(x)) can be obtained by
minimizing conditional risk Dφ(η, f ) and can be written as,

f ∗
φ (η) = arg min

f
Dφ(η, f )

Dφ(η, f ) = ηφ( fφ(η)) + (1 − η)φ(− fφ(η)) (A.A2)

where we omit the dependence on x for notational simplicity.
In the case of margin loss, the optimal link function f ∗(η)
is usually unique and computable in closed-form by solving
ηφ�( f ∗

φ (η)) = (1 − η)φ�(− f ∗
φ (η)) for f ∗

φ [23]. When f ∗
φ is

invertible, the posterior probability can be recovered from

η(x) = [ f ∗
φ ]−1(p∗(x)) (A.A3)

At this time, the loss φ(v) is said to be proper. And proper
loss has the following structure as

φ(v) = D∗
φ([ f ∗

φ ]−1(v)) + (1 − [ f ∗
φ ]−1(v))[D∗

φ]�([ f ∗
φ ]−1(v))

(A.A4)

where v = yp(x) is the margin.
Suppose we have a predictor estimation as

p̂∗(x) = p∗(x) + 	p(x) (A.A5)

where 	p(x) is the prediction error. If 	p(x) has small
amplitude, then the estimation of probabilities η̂(x) can be
approximated by its Taylor series expansion around p∗ as

η̂(x) ≈ [ f ∗
φ ]−1(p∗(x)) + 	η(x) (A.A6)

with

	η(x) = {[ f ∗
φ ]−1}�(p∗(x))	p(x) (A.A7)

If |{[ f ∗
φ ]−1}�(p∗(x))| < 1, the probability estimation error

	η(x) has smaller magnitude than the prediction error 	p(x).
Hence, for equivalent prediction error 	p(x), a loss function
φ(v) with inverse link function [ f ∗

φ ]−1(p∗(x)) of smaller
growth rate |{[ f ∗

φ ]−1}�(p∗(x))| < 1 produces more accurate
posterior probability estimation. Since the optimal link f ∗

φ can
be directly computed in closed-form from the loss function
φ(v) by solving the minimization problem in Eq. A.A2,
the loss function φ(v) acts as a regularizer of posterior proba-
bility estimation when the growth rate of inverse link function

[ f ∗
φ ]−1(p∗(x)) is smaller than one. Hence, the regularization

strength of loss φ(v) is determined by the link function f ∗
φ (η).

Let us define

ρφ(v) = 1

|{[ f ∗
φ ]−1}�(v)| (A.A8)

as the regularization strength of φ(v). If ρφ(v) > 1, then φ(v)
is denoted a regularization loss.

When taking derivatives respect to v on both sides of Eq.
A.A4, we can get the following equation

φ�(v) = (1 − [ f ∗
φ ]−1(v))β �

φ(v) (A.A9)

where

βφ(v) = [D∗
φ]�([ f ∗

φ ]−1(v)) (A.A10)

is called binding function of φ(v) in [23]. It can be observed
that the binding function βφ(v) actually defines a one-to-one
mapping between the link function f ∗

φ and the derivative of
the risk D∗

φ , which implies that the βφ(v) “binds” link and
risk. Under mild conditions, the binding function βφ(v) is a
monotonically decreasing odd function which determines the
behavior of φ(v) away from the origin (e.g. large margin
for outliers in training set). For example, in GradientBoost
framework, the weight of training sample is determined by
the derivative of loss function (as in Eq. A.A9). Therefore,
the derivative of binding function β �

φ(v) is proportional to
the weight of training sample. If β �

φ(v) produces extreme
high magnitude for large margin (e.g. outliers), the boosting
learning process will be dominated by the outliers and the
learned model only works well for outliers. From the above
analysis, it can be inferred that, the regularization strength is
controlled by the link function f ∗

φ (η) while the robustness to
outlier is determined by the binding function βφ(v).

APPENDIX B
DERIVATION OF α-TUNABLE REGULARIZATION

LOSS IN BOOSTLR

The exponential loss (i.e. φ(v) = e−v ) and logistic loss
(i.e. φ(v) = log(1 + e−v )) are commonly-used loss functions
in boosting family, and their link functions are invertible
and have the form of 1

2 log η
1−η and log η

1−η respectively by
solving Eq. A.A2. Accordingly, Eq. A.A9 which corresponds
to exponential loss and logistic loss can be written as

φ�(v) = −(1 − e2v

1 + e2v
)(e−v + ev ) (A.B1)

φ�(v) = −(1 − ev

1 + ev
) (A.B2)

By introducing a parameter ξ , the Eq. A.B1 and Eq. A.B2 can
be unified as

φ�(v) = −(1 − e(ξ+1)v

1 + e(ξ+1)v
)

1

2 − ξ
(e−ξv + eξv), ξ ∈ [0, 1]

(A.B3)

which interpolates between the derivative of exponential loss
(ξ = 1) and logistic loss (ξ = 0). Hence, the derivative of
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tunable regularization loss can be written as

φ�
σ (v) = −(1 − e

v
σ

1 + e
v
σ

)
1 − α

2 − 3α
(e−α v

σ + eα v
σ ), α ∈ [0,

1

2
]

(A.B4)

where σ = μ
ξ+1 and α = ξ

1+ξ , and 0 < 1
μ ≤ 1 is the shrinkage

factor. As α varies, the φ�
σ (v) interpolates between the deriva-

tive of logistic loss and exponential loss. Hence, the loss φσ (v)
is called α-tunable regularization loss in BoostLR [23].

According to Eq. A.A8 and Eq. A.A9, the regularization
strength of loss φσ (v) in Eq. 4 can be written as:

ρφσ (v) = 1

|{[ f ∗
φσ

]−1}�(v)| = 1

|
∂( e

v
σ

1+e
v
σ

)

∂v |
= (1 + e− v

σ )2

1
σ e− v

σ

(A.B5)

The following can be obtained from Eq. A.B5.

(1 + e− v
σ )2 − 1

σ
e− v

σ = 1 + 2e− v
σ + e−2 v

σ − 1

σ
e− v

σ

= 1 + (2 − 1

σ
)e− v

σ + e−2 v
σ (A.B6)

Since ξ ∈ [0, 1] and 0 < 1
μ ≤ 1, then 2 − 1

σ = 2 − ξ+1
μ ≥ 0,

and Eq. A.B6 is larger than 0 for any v which implies that
the regularization strength ρφσ (v) in Eq. A.B5 is larger than
1. Hence, the loss φσ (v) used in Eq. 4 is a regularization
loss. The σ is called regularization gain in [23] as it controls
the regularization strength ρφσ (v) by manipulation of the loss
margin v = yp(x). α determines the robustness to outliers (i.e.
large margin) through controlling the magnitude of β �

φ(v) (e.g.

β �
φσ

(v) = −1 when α = 0 and β �
φσ

(v) = −(e− v
σ + e

v
σ ) when

α = 1
2 ).
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