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Abstract— We present a unified multi-task learning architec-
ture for fast and accurate pedestrian detection. Different from
existing methods which often focus on either a new loss function
or architecture, we propose an improved multi-task convolu-
tional neural network learning architecture to effectively and
efficiently interfuse the task of pedestrian detection and semantic
segmentation. To achieve this, we integrate a lightweight semantic
segmentation branch to Faster R-CNN detection framework that
enables end-to-end hard parameter sharing in order to boost
the detection performance and maintain computational efficiency
as follows. Firstly, a Semantic Segmentation to Feature Module
(SS2FM) refines the convolutional features in RPN stage by
integrating the features generated from the semantic segmen-
tation branch. Secondly, a Semantic Segmentation to Confidence
Module (SS2CM) refines the classification confidence in RPN
stage by fusing it with the semantic segmentation confidence.
We also introduce an effective anchor matching point transform
to alleviate the problem of feature misalignment for heavily
occluded pedestrians. The proposed unified multi-task learning
architecture lends itself well to more robust pedestrian detection
in diverse scenarios with negligible computation overhead. In
addition, the proposed architecture can achieve high detection
performance with low resolution input images, which significantly
reduces the computational complexity. Experiment results on
CityPersons and Caltech datasets show that our method is the
fastest among all state-of-the-art pedestrian detection methods
while exhibiting competitive detection performance.

Index Terms— Multi-task learning, pedestrian detection,
semantic segmentation, feature aggregation.

I. INTRODUCTION

PEDESTRIAN detection plays a key role in many com-
puter vision applications such as pedestrian identification,

autonomous driving, robotic navigation and video surveillance
[1], [2]. Many research efforts in pedestrian detection have
been undertaken in recent years [2]–[11], however they still
perform poorly in challenging cases such as heavy occlu-
sion, highly cluttered background, low resolution, etc. [12].
In addition to high robustness, real-world applications often
necessitate that the algorithms run at high-speed on limited
computational resources (e.g., embedded systems employed in
autonomous vehicle and robotics) [6], [13], [14]. This imposes
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a low computational complexity requirement on pedestrian
detection algorithms in many applications.

Pedestrian detection falls under a broader problem of object
recognition, where the existing works are categorized into the
following tasks: object detection and semantic segmentation.
Object detection classifies and localizes a region of a specific
object instance, while semantic segmentation assigns each
pixel with the corresponding object class label. Recent meth-
ods rely on deep convolution neural networks to learn semantic
features for representing objects effectively [15], [16] [17],
[18] [6], [19] [14]. However, both tasks learn semantic features
from different types of inputs, and hence they are characterized
by different advantages and disadvantages. Object detection
works well for localizing distinct objects but often includes
unnecessary backgrounds. Semantic segmentation can provide
object pixel-wise boundary but fails to distinguish objects
within same class, especially in inter-occlusion cases. Existing
works in pedestrian detection typically rely on either an object
detection framework [6], [7] [5] or a semantic segmentation
framework [18], [20] to locate pedestrians in an image.
As such, these works suffer from the inherent limitations
mentioned above.

Recent studies demonstrated that learning multiple tasks
simultaneously while exploiting commonalities and differ-
ences across tasks, i.e. multi-task learning, can lead to
improved prediction accuracy and learning efficiency [17],
[21]. In multi-task learning, tasks share a common low-
dimensional representation, which can be jointly learnt with
task specific parameters to improve the performance of each
task. Some recent works have included semantic segmentation
results as a prior to boost the performance of pedestrian
detection. In [11], a semantic segmentation mask is introduced
as an additional semantic channel to the RGB channels to
improve the detection of small pedestrians. In [22], [23], the
semantic segmentation mask is utilized to compute the scaling
factors to re-score the estimation results. However, all of these
works require a separate network (e.g., FCN [20]) to generate
the semantic segmentation mask. Moreover, pixel-wise anno-
tations, which are costly to obtained, are required to provide
the supervision signals for training (e.g., Cityscapes [16]).
In [24], an additional semantic segmentation branch is used
with the detection head in a weakly-supervised manner. The
full potential of fusing semantic segmentation with pedestrian
detection is not fully exploited in [24], and we will later show
that the learned features are still not distinctive enough in some
challenging cases (e.g., heavily occluded pedestrians).

State-of-the-art pedestrian detection methods also often
induce high computational complexity [6], [14], [22], [23]. For
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Fig. 1. Illustration of proposed learning architecture. The proposed architecture consists of two stages: RPN with Semantic Segmentation Aggregation Module
(referred as SSAM-RPN) and R-CNN. In SSAM-RPN, there are totally two detection heads attached to Conv4_3 and Conv5_3 named as RPN_Head_C4 and
RPN_Head_C5 respectively. Here we only show the RPN head attached to Conv5_3 feature maps (referred as RPN_Head_C5) for simplicity. The Semantic
Segmentation to Feature Module (referred as SS2FM, highlighted with blue rectangle) is exploited for building robust proposal convolutional features. The
Semantic Segmentation to Confidence Module (referred as SS2CM, highlighted with orange rectangle) is used for generating confidence from semantic
segmentation result. The R-CNN of Faster R-CNN is adopted to refine the pedestrian proposals from SSAM-RPN. We use rectangle with orange background
to represent corresponding losses. In the tailored VGG-16, we only keep conv1-5 layers (except for the pool4 layer). GC stands for Group Convolution.

example, F-DNN2+SS [23] requires 2.48 seconds to process
one image from Caltech dataset [25] using NVIDIA TITAN
X GPU. The high computational complexity of F-DNN2+SS
comes from its combination of predictions from several back-
bone networks (including GoogleNet [26] and ResNet-50 [27])
and a separate mask generation network. In order to reduce
overall computational complexity, CSID [14] uses a much
lighter convolutional neural network as backbone network (i.e.,
DLA-34 [28]). CSID obtains a new state-of-the-art detection
performance on recently released CityPersons dataset [11]
with a test time of 0.16 seconds per image on NVIDIA GTX
1080Ti GPU, which is about 2 times faster than its baseline
CSP [6] that takes ResNet-50 [27] as backbone network. Even
though CSID achieves a much better inference efficiency than
CSP, it is still too high for many real-world applications.

Our work addresses the high computational complexity of
pedestrian detection while maintaining competitive detection
performance. We proposed an end-to-end multi-task learning
neural network architecture that effectively interfuses pedes-
trian detection and semantic segmentation tasks. The proposed
architecture simultaneously learns the pedestrian detection
and semantic segmentation tasks using only bounding box
annotations. Specifically, we integrate a lightweight seman-
tic segmentation head to the Faster R-CNN framework in
order to extract semantic segmentation features in a weakly-
supervised manner. The semantic segmentation features are
then infused with the proposal convolutional features to obtain
more robust and distinctive features for RPN proposal gen-
eration (SS2FM in Fig. 1 and Fig. 2a). Another lightweight
module is introduced to compute the semantic segmentation
confidence (SS2CM in Fig. 1 and Fig. 2b), which is then fused
with the classification confidence to derive the final pedestrian
proposal confidence. Finally, the segmentation convolutional
feature maps are concatenated with top convolutional feature
maps from the backbone network to serve as features for the
R-CNN step. By aggregating semantic segmentation features
from the two modules (SS2FM and SS2CM), the proposed
method detects pedestrians more robustly. It is noteworthy

Fig. 2. Details of proposed a) SS2FM, and b) SS2CM. The SS2FM
takes semantic segmentation result as input. The SS2CM takes semantic
segmentation result, the RPN classification and RPN box regression as input.
The digits attached to feature maps are the number of channels.

that the semantic segmentation branch is introduced in a
hard parameter sharing manner, hence it incurs negligable
computation overhead. In addition, group convolution oper-
ations are introduced to reduce the computational complexity
in RPN stage. We show that the proposed unified multi-task
learning architecture can achieve high detection performance
with low resolution input images, which significantly reduces
the computational complexity. The utilization of low resolution
input images can also lead to higher power efficiency [29],
which is desirable in many applications that are battery-
powered. Experiment results on well-known datasets show that

Authorized licensed use limited to: Nanyang Technological University. Downloaded on November 10,2020 at 11:43:21 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: UNIFIED MULTI-TASK LEARNING ARCHITECTURE FOR FAST AND ACCURATE PEDESTRIAN DETECTION 3

our method is the fastest among all state-of-the-art pedestrian
detection methods while exhibiting competitive detection per-
formance.

A. Main Contributions

Our contributions are summarized as follows:
1) We propose a unified multi-task end-to-end neural net-

work architecture for pedestrian detection that simul-
taneously achieves low computational complexity and
robust detection in challenging scenarios (e.g., heavily
occluded scenes).

2) This is the first work to demonstrate that robust pedes-
trian detection can be achieved using low resolution
input images.

3) We introduce a simple and effective anchor matching
point transform to alleviate feature misalignment for
heavily occluded pedestrians.

4) Finally, experiment results on well-known datasets show
that our method is the fastest among all state-of-the-art
pedestrian detection methods while exhibiting competi-
tive detection performance.

II. RELATED WORK

1) Multi-Task Learning: Multi-task learning is defined as
follows [30]: Given m learning tasks {Ti }m

i=1 where all the
tasks or a subset of them are related, multi-task learning
aims to improve the learning of a model for Ti by using the
knowledge contained in all or some of the m tasks.

Multi-task learning has been widely used in machine learn-
ing [30]–[34]. Multi-task learning can also work as regu-
larization by providing inductive bias to each task [31]. By
exploiting commonalities and differences across tasks, multi-
task learning can achieve better generalizations for each task
with less annotations than single task learning [35]. Most
multi-task learning in deep neural network can be divided into
two groups based on how the parameters of hidden layers
are shared. The first category is called soft parameter sharing,
wherein each task has its own model and parameters. The
parameters in each model are encouraged to be similar by
regularizing their distance [36]–[41]. The second category
is hard parameters sharing, which generally shares several
hidden layers between all tasks and keeps several task-specific
branch head for each learning task [17], [42]–[45]. Compared
with hard parameter sharing, soft parameter sharing typically
requires a carefully designed knowledge sharing mechanism
and has higher overall computational complexity as each task
is processed by a separate model.

2) Pedestrian Detection: Pedestrian detection has achieved
notable progress in recent years with the prevalence of deep
convolutional neural network (DCNN). Many works were
proposed to improve pedestrian detection by either adding
new layers to the existing Faster R-CNN object detection
network or designing better loss functions to learn more robust
convolutional classification features. By integrating the RPN of
Faster R-CNN and a boosted forest as downstream classifier,
RPN+BF [46] obtained improved performance on Caltech
dataset. In Multi-Scale CNN (MS-CNN) [47], a unified DCNN

is proposed to perform detection at various intermediate net-
work layers such that the receptive fields match objects at
different scales. F-DNN (Fused Deep Neural Network) [22]
proposes to combine more classification networks (including
GoogleNet [26] and ResNet-50 [27]) as downstream classifier.
AR-Ped [5] proposes an autoregressive pedestrian detection
framework that utilizes a stackable de-encoder module with
convolutional re-sampling layers, which can autoregressively
produce and refine both features and classification predic-
tions. Inspired by the “Squeeze-and-Excitation” (SE) block
in [48], FasterRCNN+ATT [49] proposes to employ channel-
wise attention to handle occlusions for pedestrian detection.
This is motivated by the findings that many channel features
are localizable and often correspond to different body parts.
An attention vector is learned from attention network to re-
weight the top convolution channels as attention guidance and
notable performance improvement is achieved for occluded
cases. GDFL [9] and its extension CA-GDFL [50] propose to
exploit scale-aware pedestrian attention masks and a zoom-
in-zoom-out module to improve the capability of the feature
maps to identify small and occluded pedestrians. CSP [6]
reformulates pedestrian detection as a problem of center and
scale predictions. In order to improve the detection accuracy
in the crowd, OR-CNN [3] designs a new aggregation loss
to enforce proposals to be close and located compactly to
the corresponding objects. RepLoss [4] proposes to exploit
the repulsion loss for pedestrian detection in crowd scenes,
which is motivated by the fact that the attraction-by-target loss
alone may not be sufficient for training an optimal detector,
and repulsion-by-surrounding can be beneficial. Based on CSP,
CSID [14] proposes an ID-Map to encode both identity and
density pedestrian information for each predicted box, which
is used in the post-processing step of NMS (Non-Maximum
Suppression) and achieves improved detection performance.
The above methods often obtain inferior predictions for pedes-
trians that are heavily occluded (e.g., only head is visible).
This is because these methods rely on features from pedestrian
center to classify pedestrian and in heavily occluded scenes,
the features are dominated by other objects (e.g., vehicles) or
other pedestrian’s part as shown in Fig. 3. In addition, CSP and
CSID assume a fixed pedestrian aspect ratio (i.e., pedestrian
width/pedestrian height), and they only predict the pedestrian
height. The pedestrian width is computed based on the fixed
aspect ratio. However, such strict assumption would lead to
inaccurate predictions.

A few works have attempted to infuse information obtained
from semantic segmentation result into the object detection
pipeline to improve detection performance. In Faster R-CNN
+ Seg [11], a semantic segmentation mask is introduced
as an additional semantic channel to the RGB channels to
improve the detection of small pedestrians. In F-DNN+SS
[22] and F-DNN2+SS [23], the semantic segmentation mask
is utilized to compute the scaling factors to re-score the
estimation results. However, all of these works require a
separate network (e.g., FCN [20]) to generate the seman-
tic segmentation mask, hence the pedestrian detection and
semantic segmentation tasks are not learnt simultaneously. The
separate training of each task cannot exploit the advantages of
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Fig. 3. Visualization of heavily occluded pedestrians from CityPersons
dataset. The digits indicate the visibility of each pedestrian.

multi-task learning and reduces the robustness for semantic
segmentation as small segmentation errors may be amplified
in the process of re-scaling pedestrian predictions. In addition,
these methods require pixel-wise annotations, which are costly
to obtained, to provide the supervision signals for training
(e.g., Cityscapes [16]).

Recent studies demonstrating the utilization of segmentation
masks for generic object detection [21], [51], [52] have
motivated the authors of SDS-RCNN [24] to jointly learn
the pedestrian detection and semantic segmentation tasks by
adding a semantic segmentation branch to the top network
layer. This led to improved performance on Caltech dataset.
The added semantic segmentation branch is only utilized
during training, and hence does not incur additional com-
putation overhead in the inference stage. Analysis by the
authors shows that the performance gain comes mostly from
improved robustness in detecting atypical pedestrians (e.g.,
partially occluded pedestrians or pedestrians with unusual
pose). It is observed in FasterRCNN+ATT [49] that many
channels from top convolutional feature maps show highly
localizable activation patterns that relate to specific pedestrian
body regions or body part. Hence, the success of SDS-RCNN
can be attributed by the channel boosting in top convolutional
feature maps that are related to pedestrian body. However, this
could also increase the risk of inaccurate prediction for heavily
occluded pedestrians. For example, when only head and shoul-
der of pedestrian are visible (as shown in top right of Fig. 3),
SDS-RCNN uses pedestrian center to conduct prediction in
which features from pedestrian center is heavily influenced
by the vehicle. This increase the risk of misclassification.
In order to alleviate this problem, we propose a simple and
effective method that exploits pedestrian upper center rather
than pedestrian center to conduct prediction. This can be
achieved by simply transferring the matching point between
feature map and anchors from anchor center to anchor upper
center as shown in Fig. 8.

3) Computational Complexity: Very few works on pedes-
trian detection focus on reducing the computational complex-
ity, despite this being a key factor in practical scenarios, e.g.,
autonomous driving and robot navigation. The computation
platforms of such applications necessitate low complexity
pedestrian detector, as they often have tight computational
resources and employ battery as their main power source. The
computational complexity of DCNN based pedestrian detector

[11], [22] [4], [24] [5], [6] [14], is mainly contributed by:
the computation of backbone networks, and the combination
of feature maps for final pedestrian prediction. For instance,
VGG-16 [53], ResNet-50 [27] and DLA-34 [28] need about
15.5 billion FLOPs, 3.8 billion FLOPs and 3.0 billion FLOPs
for an input image with resolution of 224 × 224.1 As shown
in Table VIII (i.e., CSP), the feature maps combination occu-
pies most of the execution time as higher resolution feature
maps are required to achieve robust pedestrian detection. The
challenge in reducing computational complexity arise from
the fact that existing mechanisms for improving the detection
performance often incur significant computational overheads.
In order to learn more robust features for small pedestrian
detection, existing works often fuse convolutional feature maps
from several intermediate backbone network layers [6], [14]
or combine features from several backbone networks [22].
This increases the overall computational complexity of pedes-
trian detector. F-DNN2+SS [22] combines several backbone
networks and requires 2.48 seconds to process one image
from Caltech dataset using NVIDIA TITAN X GPU, which is
un-acceptable in real-world applications. Existing works also
often use larger input image resolution than the original image
resolution for inference [3], [4] [24] in order to achieve better
detection performance, especially for small pedestrians. This
is because lower image resolution would reduce the discrimi-
native power of pedestrians from the background. However,
the computational complexity increases by a power-of-two
factor with the input image resolution. As such, achieving high
detection performance and reducing computation complexity
are often viewed as orthogonal goals in the existing works.

4) Semantic Segmentation: The semantic segmentation task
assigns semantic labels to each pixel [20], [54] [55], [56]
[57]. Recently, real-time semantic segmentation algorithms are
proposed to meet the demands for fast response in practical
applications. E-Net [58] is a neural network architecture
that is designed from scratch for semantic segmentation and
achieves low computational complexity. The authors in [55]
designed SegNet, a deep convolutional network architecture
which includes small network structures and skip connections.
SegNet achieves high efficiency both in terms of computational
complexity and memory consumption. ERFNet [56] exploits
a novel layer that uses residual connections and factorized
convolutions. ERFNet achieves top precision on CityScapes
dataset, while running orders of magnitude faster than state-
of-the-art methods. ESPNet [59], [60] was introduced as a
light-weight and power-efficient network which is based on
a new convolutional module named efficient spatial pyramid
(ESP). DFANet [57] employs a single lightweight backbone
and aggregates discriminative features through sub-network
and sub-stage cascade. DFANet achieves 160 FPS (Frame
Per Second) with input image resolution 512 × 1024 on
Cityscapes dataset [16], while obtaining comparable perfor-
mance with state-of-the-art methods.

The lack of common datasets for both pedestrian detection
and semantic segmentation tasks, however, makes it chal-
lenging to directly exploit semantic segmentation result for

1https://github.com/osmr/imgclsmob/blob/master/chainer_/README.md
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accurate pedestrian detection. The difficulty in obtaining such
datasets arises from the fact that the pixel-wise annotations
for semantic segmentation is much more labour intensive
than box-wise annotations for pedestrian detection. Currently,
only CityPersons dataset, which is widely-used for pedestrian
detection, has pixel-wise annotations for each image [16].
Several popular pedestrian detection benchmarks, including
INRIA, Caltech and recently published CrowdHuman [61]
and Wide Pedestrian [62] datasets, do not have pixel-wise
annotations for semantic segmentation. In addition, effectively
and efficiently exploring semantic segmentation for pedestrian
detection is still an unsolved problem. The methods adopted by
Faster R-CNN + Seg [11], F-DNN+SS [22] and F-DNN2+SS
[23] to exploit semantic segmentation results do not rely
on end-to-end training, which limits their performance in
pedestrian detection. In this work, we show that the proposed
learning architecture can automatically extract coarse semantic
segmentation results to achieve competitive pedestrian detec-
tion performance and also lower runtime when compared
with state-of-the-art methods. As such, the proposed learning
architecture can directly exploit semantic segmentation results
for accurate pedestrian detection in all pedestrian detection
datasets, including those without pixel-wise annotations.

III. PROPOSED METHOD

Our work is motivated by the fact that the pedestrian
regions are highlighted in semantic segmentation results while
non-pedestrian regions (i.e., backgrounds) are suppressed.
The highlighted regions provide a new perspective to locate
pedestrian from background, i.e., candidate with highlighted
region support in semantic segmentation result is more likely
to be a real pedestrian. Our proposed method extends the
Faster R-CNN detection framework to multi-task learning that
simultaneously learns the task of pedestrian detection and
semantic segmentation, and it consists of two stages: RPN
with Semantic Segmentation Aggregation Module (referred as
SSAM-RPN) to generate pedestrian proposals with semantic
segmentation confidence, and R-CNN to refine pedestrian
proposals from SSAM-RPN. In R-CNN stage, we tailor
R-CNN from Faster R-CNN detection framework and combine
confidence from SSAM-RPN and R-CNN as final pedestrian
confidence. Fig. 1 illustrates the proposed learning architec-
ture.

A. RPN With Semantic Segmentation Aggregation Module
(SSAM-RPN)

The RPN in Faster R-CNN aims to obtain a set of bounding
box proposals with certain confidence levels for pedestrians. In
this section, we introduce a RPN with Semantic Segmentation
Aggregation Modules (SSAM-RPN) to obtain better pedestrian
proposals. A tailored VGG-16 [53] is used as the backbone
network and we only keep conv1-5 layers (except for the pool4
layer) in the proposed SSAM-RPN.

In order to take advantage of multi-task learning, we extend
the vanilla RPN to simultaneously learn the task of pedestrian
detection and semantic segmentation. The task of semantic
segmentation aims to predict class label for each pixel, i.e.,

Fig. 4. Visualization of pixel-wise annotations (upper row) and weakly box-
wise annotations (lower row) from CityPersons dataset. It can be observed
that the differences between pixel-wise annotation and box-wise annotation
become smaller as the image is downsampled.

pedestrian and non-pedestrian, as shown in Fig. 5b. It can
be observed that the pedestrian regions are highlighted in the
semantic segmentation results. Intuitively, the semantic seg-
mentation results can potentially improve the pedestrian detec-
tor’s performance, as demonstrated in Faster R-CNN+Seg
[11] and F-DNN2+SS [23]. However, Faster R-CNN+Seg and
F-DNN2+SS employ independent models to obtain semantic
segmentation results which prevent them from simultaneously
learning the pedestrian detection and semantic segmentation
tasks. In addition, using a separate model induces inferior per-
formance and higher computational complexity as discussed
earlier. In order to overcome these drawbacks, we propose a
multi-task learning architecture to obtain semantic segmen-
tation result based on vanilla RPN. Specifically, we attach
semantic segmentation branch to the RPN backbone network
designed for pedestrian detection, which can integrate seman-
tic segmentation features into backbone network and share
computation with detection task. As shown in Fig. 1, the
connections from tailored VGG-16 network to Ls2 is a seman-
tic segmentation branch for RPN detection head attached
to Conv5_3 layer. Compared with semantic segmentation
branch used in SDS-RCNN, our proposed approach adds a
segmentation convolutional layer before generating seman-
tic segmentation result. This enables the multi-task learning
architecture to learn more compact semantic segmentation
features and provide additional feature maps for R-CNN step
as described in the next sub-section. We use weakly bounding
box annotations designed for pedestrian detection as semantic
segmentation annotations, in which pedestrian regions are
labelled as foreground and others are labelled as background.
The box-wise annotations have minor differences from pixel-
wise annotations when the image is downsampled significantly
across the network layers as shown in Fig. 4. The box-wise
annotations are demonstrated to work well for highlighted
pedestrian region and are sufficient for detection task that
focuses on predicting pedestrian bounding box rather than
pixel labels for pedestrians. The semantic segmentation result
from branch corresponding to Ls2 is shown in Fig. 5b. We can
observe that slightly larger regions than box-wise annotations
are classified as pedestrian.

In the proposed architecture, the following two modules
are introduced to exploit the semantic segmentation results to
boost pedestrian detection: Semantic Segmentation to Feature
Module (SS2FM) and Semantic Segmentation to Confidence
Module (SS2CM).

1) Semantic Segmentation to Feature Module (SS2FM):
SS2FM (highlighted with blue rectangle in Fig. 2a) aims to
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Fig. 5. Visualization of semantic segmentation result and various confidence feature maps from RPN stage. Title represents the name of feature map. It can be
observed that the background region in fused feature map (i.e., h)) of proposed method are suppressed significantly than vanilla RPN (i.e., c)) and SDS-RPN
(i.e., d), RPN stage of SDS-RCNN [24] as standalone detector). Even though there are some errors at the right boundary of semantic segmentation result
(i.e., b)), the learned semantic segmentation confidence of the proposed method eliminates these segmentation errors and provides accurate evaluation for
pedestrians. The brighter pixels indicates larger digit value. (Best viewed in color).

incorporate semantic segmentation result into proposal convo-
lutional features. More concretely, the semantic segmentation
result is first applied with convolution and sigmoid operations,
which can reduce the problem of scale mismatch with features
from proposal convolutional feature maps [9]. The semantic
segmentation result is then added with proposal convolutional
features to provide more discriminative features for pedestrian
proposal generation (e.g., RPN classification and bounding box
regression highlighted in gray rectangle in Fig. 1).

Compared with GDFL [9] and its extension CA-GDFL [50]
that perform multiplication operation over feature maps from
backbone network, our proposed SS2FM infuses semantic seg-
mentation features into proposal convolutional features more
smoothly. This is due to the fact that semantic segmentation
is supervised by weakly box-wise annotations which would
incur some inaccurate semantic segmentation predictions as
shown in the right boundary of Fig. 5b. These inaccurate
predictions would be significantly amplified by the multiplica-
tion operation, thereby increasing the risk of mis-classification.
Another reason for adopting addition instead of multiplication
operation is that our learned proposal convolutional features
include negative values, and multiplication operation will
lead to the problem of scale inconsistency. The classification
confidence without and with proposed SS2FM are shown in
Fig. 5e and f respectively. It is evident that the background
confidence are suppressed when SS2FM is exploited and the
classification confidence becomes more distinct in pedestrian
regions (i.e., Fig. 5f).

2) Semantic Segmentation to Confidence Module (SS2CM):
In contrast to SS2FM which helps to build more discrimi-
native convolutional features, SS2CM focuses on obtaining
more accurate pedestrian confidence by exploring semantic
segmentation result. The motivation for SS2CM stems from
the fact that a pedestrian candidate is more likely to be a true
pedestrian if its associated region in semantic segmentation
result is highlighted. This is due to the fact that non-pedestrian
regions are suppressed in semantic segmentation results as
shown in Fig. 5b.

As shown in the orange rectangle in Fig. 2b, SS2CM takes
several feature maps as input, including semantic segmentation

result, classification confidence from classification branch of
RPN head and proposals from bounding box regression branch
of RPN head. Firstly, the semantic segmentation feature map
is expanded and added with classification confidence after
average pooling to obtain new feature maps. Then semantic
pooling operation is applied on the new feature maps with
proposals from bounding box regression branch of RPN head
(highlighted in blue-gray connection in Fig. 2b). It is worth
noting that the semantic pooling is conducted with every
proposal and no NMS (Non-Maximum Suppression) is used,
which implies that every proposal has its own semantic seg-
mentation confidence. Finally, semantic segmentation confi-
dence is obtained after scaling with classification confidence
using sigmoid operation, which enables the extracted semantic
segmentation confidence to maintain consistency with clas-
sification confidence. The obtained semantic segmentation
confidence feature map is shown in Fig. 5g. It can be observed
that only pixels around pedestrian upper center are highlighted
and background pixels are suppressed, which implies that
the semantic segmentation confidence provides a reasonable
prediction for pedestrian proposal. It can also be observed
that there is a small brighter region near the left boundary of
semantic segmentation result and this is eliminated in semantic
segmentation confidence feature map. This implies that the
proposed SS2CM is robust to small semantic segmentation
errors which is common due to the usage of weakly box-wise
annotation to supervise semantic segmentation.

Compared with F-DNN2+SS that employs binary mask
(e.g., 1 for pedestrian and 0 for background) as semantic
segmentation prior, the proposed SS2CM have the following
advantages: Firstly, our semantic segmentation result is learned
from a unified multi-task learning framework and is not
truncated into binary mask which will lose some semantic
segmentation information. Secondly, our SS2CM works as a
part of a unified multi-task learning framework and can be
trained in an end-to-end way which can learn more reasonable
and robust semantic segmentation features.

After obtaining semantic segmentation confidence from
SS2CM, we combine it with classification confidence to
serve as final pedestrian proposal confidence (refered as fused
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Fig. 6. Visualization of semantic segmentation result of SDS-RPN [24] and proposed SSAM-RPN, and semantic segmentation confidence of proposed
SSAM-RPN for heavily occluded pedestrians. It can be observed that both SDS-RPN and proposed SSAM-RPN can highlight pedestrian regions in semantic
segmentation result (i.e., b), c) and f), g) ). Our SSAM-RPN can obtain reasonable pedestrian evaluation with proposed SS2CM (i.e., d) and h) ). The brighter
pixels indicates larger digit value. The number on each bounding box indicates the visibility of pedestrian. (Best viewed in color).

confidence) as shown in Fig. 5h. Benefiting from SS2CM, the
fused confidence can effectively suppress the non-pedestrian
regions, especially on the regions at the right boundary. This
implies that the semantic segmentation confidence works well
as complementary information for obtaining better pedestrian
proposal prediction. Compared with classification confidence
feature maps for vanilla RPN (i.e., Fig. 5c) and SDS-RPN2

(i.e., Fig. 5d, RPN stage of SDS-RCNN as standalone detec-
tor), the background and pixels around pedestrians in fused
confidence feature map are suppressed significantly. This
demonstrates the effectiveness of proposed SS2CM and the
necessity to exploit semantic segmentation result for more
accurate pedestrian proposal prediction.

3) Prediction Location: As described in the Related Work
section, one limitation of existing pedestrian detection methods
(including both anchor-based methods and anchor-free meth-
ods), is that they utilize the pedestrian center for classification
and regression. This works well when the pedestrian center
is visible. However, when the pedestrian is heavily occluded,
for example, only head or shoulder is visible, the features
around the pedestrian center are often dominated by other
pedestrians (bottom row of Fig. 3) or objects (top row of
Fig. 3), which can lead to mispredictions. Fig. 7 shows the
statistics of occlusion patterns from CityPersons dataset [11],
wherein most occlusions reside in lower pedestrian parts.
In order to alleviate the misalignment between features and
prediction location, we propose to move the anchor matching
point between feature map and anchors from anchor center
to anchor upper center (see Fig. 8). As such, the pedestrian
prediction location also changes from pedestrian center to
pedestrian upper center. This enables the features that are
utilized for pedestrian prediction to be applicable even in
heavily occluded cases (as shown in Fig. 9), hence increasing
the robustness of pedestrian prediction.

4) Analysis of Occlusion Robustness for Proposed SS2FM
and SS2CM: Our proposed method achieves robustness in
detecting occluded pedestrian from both the feature level
and confidence level. The semantic segmentation result of

2Since SDS-RCNN did not release its result and model on CityPersons
dataset, we train SDS-RPN using our setting.

Fig. 7. Top occlusion patterns of pedestrians on CityPersons dataset. Two
numbers on top indicate percentage and average occlusion ratio of samples
clustered into each pattern. Image is extracted from [11].

SDS-RPN and our proposed method for occluded pedestrians
are shown in Fig. 6. It can be observed that the pedestrian
regions are highlighted even though most of pedestrian parts
are occluded, which is partly attributed to the ability to
simultaneously learn the task of pedestrian detection and
semantic segmentation. This semantic segmentation result
implies that reasonable features for RPN head can be con-
structed with proposed SS2FM as semantic segmentation fea-
tures from highlighted pedestrian regions are infused into the
proposal convolutional features. The semantic segmentation
confidence for occluded pedestrians are shown in the right
of Fig. 6. Although the pedestrians are heavily occluded,
the proposed SS2CM can also obtain reasonable predictions
from semantic segmentation result. This extracted semantic
segmentation confidence works as complementary information
with RPN classification confidence, and accurate confidence
can be produced even when most of the pedestrian body is
occluded as shown in Fig. 10. Even though SDS-RPN can also
highlight occluded pedestrian parts in semantic segmentation
result, SDS-RPN does not use this prior to boost detection
and hence achieves inferior performance for heavily occluded
pedestrians.

5) Low Resolution Image for Inference: As mentioned in
the Related Work section, existing pedestrian works often use
original or higher resolution input image during inference in
order to achieve better detection performance. This increases
the computational complexity which grows by a power-of-
two factor with image resolution. In the proposed method,
the box annotations designed for pedestrian detection is used
for the task of semantic segmentation, which implies that our
learnt semantic segmentation result is not pixel-wise accurate.
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Fig. 8. Visualization of anchor center as matching point a) and proposed
anchor upper center as matching point b). h and w represent the height and
width of anchor respectively. d represents the distance between anchor upper
boundary and matching point.

When the input image resolution increases, the differences
between box-wise annotations and pixel-wise annotation will
also increase. Hence, we propose to use input image with
smaller resolution during inference. Our experiments show that
the proposed method can produce more reasonable semantic
segmentation result with lower input image resolution, which
helps to significantly reduce the overall computational com-
plexity.

In addition to the detection head that is attached to
the top backbone network layer (i.e., RPN_Head_C5 in
Fig. 1), we add another detection head to Conv4_3
layer called RPN_Head_C4. Only SS2FM is employed in
RPN_Head_C4 detection head to improve the training sta-
bility. RPN_Head_C4 is only used in training process and
hence has no effect on the inference execution time. Besides,
group convolution (GC in Fig. 1) is utilized in the proposed
SSAM-RPN detection head. As discussed in the experimental
section, GC can lower the computation complexity without
compromising on the detection performance.

6) Loss Function: Our proposed SSAM-RPN is trained by
mining the following loss function:

Lrpn = wcls_1 Lc1 + wbb_reg_1Lr1 + wseg_1 Ls1

+wcls_2 Lc2 + wbb_reg_2 Lr2 + wseg_2 Ls2 (1)

where Lc∗ and Ls∗ are cross-entropy loss for classification and
semantic segmentation. The w∗ are weights for corresponding
loss function and the subscripts of 1 and 2 correspond to
losses in RPN_Head_C4 and RPN_Head_C5 respectively. The
classification loss Lc∗ and segmentation loss Ls∗ are designed
for binary classification problem (i.e., pedestrian vs. non-
pedestrian). The Lr∗ is a modified smooth-L1 loss as follows:

Lr (x) =
{

0.5x2β, if |x | < β

|x | − 0.5β, otherwise
(2)

where β is parameter to control where the frontier between
the L1 and the L2 losses are switched, and x is the difference
between predicted value and ground truth at bounding box
regression of Faster R-CNN [63].

In SSAM-RPN, we use a stricter labelling policy than Faster
R-CNN [63]. In particular, a proposal is labelled as positive
(i.e., pedestrian) if the IoU (Intersection over Union) with
groundtruth box is larger than 0.55 for RPN_Head_C5 and

Fig. 9. Visualization (i.e., red dot) of anchor center as prediction location
a) and c), and proposed anchor upper center as prediction location b) and d).
With proposed matching point transform, the pedestrian prediction location
changes from pedestrian center to pedestrian upper center. The number on
each bounding box indicates the visibility of each pedestrian.

0.6 for RPN_Head_C4. Otherwise the proposal is labelled
as negative (i.e., non-pedestrian). This labelling policy aims
to learn more compact features from RPN_Head_C4 and
alleviate detection difficulty for RPN_Head_C5. The detection
result of SSAM-RPN is obtained after applying NMS with
threshold of 0.5 on the proposals. In semantic pooling process,
we use ROIAlign pooling operation [17] to extract a 7 × 7
feature map, and its average is used as semantic segmentation
confidence for each proposal.

B. R-CNN Binary Classifier

We tailor R-CNN from Faster R-CNN as binary classifier
(i.e., pedestrian vs. non-pedestrian) in the proposed method,
wherein only classification branch is kept. The pedestrian
regions have been highlighted in semantic segmentation results
as shown in Fig. 5b which implies that the convolutional
features in semantic segmentation branch can provide some
cues to recognize pedestrian. Therefore, we concatenate the
Conv5_3 feature maps with semantic segmentation convolu-
tional feature maps as R-CNN input feature maps as shown
in Fig. 1.

We train R-CNN by mining a cross-entropy loss for pedes-
trian classification. The ROI pooling operation is replaced
with ROIAlign pooling operation in order to alleviate the
problem of pooling bin collapse [46] if ROI’s input resolution
is smaller than the output (i.e., 7 × 7 which is 56 × 56 in input
image with our tailored VGG-16) as the latter will induce the
extracted features flat and less discriminative. The dimension
of fully connected layer is set to 2048 and one dropout layer
with 0.5 rate is used to reduce the effect of overfitting in
R-CNN. The proposals with IoU larger than 0.55 are labelled
as positive (i.e., pedestrian), otherwise they are labelled as
negative (i.e., non-pedestrian).

IV. EXPERIMENTS

In this section, we first introduce the pedestrian detection
datasets and evaluation metrics used in our experiments. Then
we show experiment results to compare the detection perfor-
mance and test time of the proposed method with state-of-the-
art methods. Finally, we will report the results of our ablation
studies for the proposed method on CityPersons dataset.
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TABLE I

DETECTION PERFORMANCE AND TEST TIME COMPARISON WITH STATE-OF-THE-ARTS ON CITYPERSONS DATASET

A. Datasets and Evaluation Metrics

We conduct experiments on two public datasets: CityPer-
sons [11] and Caltech [25]. The CityPersons dataset is built
upon the Cityscapes dataset [16] in which data is collected
from multiple cities and countries across Europe. There are a
large number of occluded pedestrians in CityPersons dataset
that makes it ideal for evaluating the occlusion robustness of
the detection approaches. The original image size is 2048 ×
1024, which we resized to 1400 × 700 for training and to
1600×800 for testing respectively. We conduct experiments on
original training and validation subset which include 2975 and
500 images respectively. For the Caltech dataset, we adopt
the approach in [64] to extract 42782 images with resolution
of 640 × 480. The Caltech test set has 4024 images which
includes 1014 positive images. We use new annotations from
[12] for training and testing. The images are resized to
512 × 384 for training and 544 × 408 for testing respectively.

For CityPersons and Caltech datasets, we employ
commonly-used standard log-average miss rate (MR) between
10−2 and 100 of false positive per image (FPPI) to evaluate
the detection performance. A detection result is considered
as positive (i.e., pedestrian) when its IoU with groundtruth
is larger than 0.5. We perform a rigorous evaluation of the
detection performance of the proposed method by varying
pedestrian height and pedestrian occlusion levels. The details
of the evaluation setups are as follows:

1) Reasonable: height ∈ [50, ∞], visibility ∈ [0.65, ∞]
2) Heavy occlusion: height ∈ [50, ∞], visibility ∈ [0.00,

0.65]
3) Partial occlusion: height ∈ [50, ∞], visibility ∈ [0.65,

0.90]
4) Bare: height ∈ [50, ∞], visibility ∈ [0.90, ∞]
5) Small: height ∈ [50, 75], visibility ∈ [0.65, ∞]
6) Medium: height ∈ [75, 100], visibility ∈ [0.65, ∞]
7) Large: height ∈ [100, ∞], visibility ∈ [0.65, ∞]
8) All: height ∈ [20, ∞], visibility ∈ [0.20, ∞]
The ’height’ in the evaluation setups indicates the pedestrian

height while ’visibility’ refers to the corresponding pedestrian

occlusion level. For example, ’Reasonable’ means that the
evaluation is conducted on the subset of pedestrians whose
height are at least 50 pixels tall and at most 35% of pedestrians
are occluded. We use ’Heavy’ and ’Partial’ to represent the
evaluation setups of Heavy occlusion and Partial occlusion in
the following part respectively.

We use the evaluation code provided by CityPersons [11]
and Caltech [25] to obtain the corresponding MR value.

B. Training Details

Our method is implemented using Pytorch with a single
NVIDIA GTX 1080Ti GPU for training and testing. One
image is used in each iteration and SGD solver is applied.
The VGG-16 [53] network pre-trained from ImageNet [65] is
used as backbone network both for CityPersons and Caltech
dataset. For CityPersons dataset, the network is trained for
45k iterations with initial learning rate of 0.0025 which is
decreased by a factor of 10 at 30k iterations and again at 40k
iterations. Weight decay of 0.0005 and momentum of 0.9 are
employed. We use a linear warmup strategy for learning rate
within first 500 iterations. For Caltech dataset, the network is
trained for 80k iterations with initial learning rate of 0.0025
which is decreased by a factor of 10 at 35k iterations. We use
the first 300 iterations for learning rate warmup. Other settings
are the same for CityPersons dataset.

C. Comparisons With State-of-the-Art Methods

1) CityPersons Dataset: The detection performance
comparisons with state-of-the-art methods including
Faster R-CNN, Faster R-CNN+Seg, OR-CNN, RepLoss,
GDFL, CA-GDFL, re-trained SDS-RCNN,3 TLL, TLL+MRF,
ALFNet, CSP and CSID are shown in Table I. For the state-
of-the-art methods, we only list the MR values for the
evaluation setups that are released in their papers. We also

3We re-train SDS-RCNN as it does not release detection performance and
test time on CityPersons dataset.
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Fig. 10. Visualization of detection results from vanilla RPN b), SDS-RPN
c) and our proposed SSAM-RPN d). a) shows the ground truth with visibility.
It can be observed that our proposed SSAM-RPN achieves extremely high
confidence on both heavily occluded pedestrians while vanilla RPN and SDS-
RPN obtain much lower confidence than ours, especially for pedestrian with
visibility of 0.162.

re-train SDS-RCNN using mostly the same settings4 with our
proposed method in order to provide a fair comparison with
the proposed learning architecture. We conduct experiments
for SDS-RCNN on two image resolutions and named them
SDS-RCNN_1 and SDS-RCNN_2 respectively as shown in
Table I. Ours-SSAM-RPN represents proposed RPN with
Semantic Segmentation Aggregation Module as a standalone
pedestrian detector. From the table, it can be observed
that the proposed method achieves competitive detection
performance on several evaluation setups when compared
with the best reported detection performance from CSID,
including Reasonable, Heavy occlusion, Bare, Large and
All setups. Particularly for the Heavy occlusion setup, our
proposed method achieves the second lowest MR value
which is about 3.8%, 9.5%, 5.4%, 4.5% and 1.9% lower
than OR-CNN, RepLoss, TLL+MRF, ALFNet and CSP
respectively. Compared with CSID, the MR of our proposed
method is only about 0.9% higher. It is noteworthy that the
proposed method does not exploit feature maps infusion
from multiple inter-media layers which is a key contributor
to CSID’s better detection performance albeit incurring high
computational complexity. RepLoss also obtains same MR
value on Reasonable setup with ours but they require a 1.5X
upsampled input image (i.e., 3072 × 1536) which will induce
higher computational complexity. In addition, our proposed
method only requires bounding box annotations rather than
precise pixel-wise annotations in Faster R-CNN+Seg [11] or
box-wise visibility annotations in OR-CNN [3]. This implies
that the proposed semantic segmentation aggregation module
can be easily extended to datasets that only have bounding
box annotation and is an effective way to handle heavily
occluded pedestrians. GDFL and its extension CA-GDFL
obtain better performance than Faster R-CNN. However,
their MR values are about 3.9% and 2.7% higher than our

4We remove the SS2FM and SS2CM of the proposed learning architecture
in RPN stage and call it SDS-RPN. The number of proposals fed to R-CNN
stage of SDS-RCNN is set to 50 in order to fit the CityPersons dataset. The
proposals with IoU larger than 0.7 are labelled as positive (i.e., pedestrian),
otherwise they are labelled as negative (i.e., non-pedestrian) as suggested in
SDS-RCNN [24].

proposed method, which demonstrates the advantage of the
proposed learning architecture. The re-trained SDS-RCNN
(i.e., SDS-RCNN_1) obtains similar detection performance
with Faster R-CNN on image resolution of 1600 × 800,
which is about 4.2% higher than our proposed method. This
demonstrates the effectiveness of the proposed semantic
segmentation aggregation modules.

The test time comparisons with state-of-the-art methods on
Citypersons dataset are shown in Table I. We only list the test
time of ALFNet, CSP and CSID since other methods have
not released their test time on CityPersons dataset in their
papers. From the table, it can be observed that the proposed
method achieves the lowest test time. Specifically, our pro-
posed method can run about 2.5, 3.0 and 1.5 times faster than
ALF, CSP and CSID respectively. It can be observed that ALF,
CSP and CSID report their test time when evaluating on input
image resolution of 2048 × 1024 while our reported test time
is obtained on input image resolution 1600 × 800.

In order to compare MR using same input image resolution
as ours, we run CSP with 1600 × 800 input images on
the same programming environment and hardware. CSP was
chosen for the evaluation as it is the only work that provides
the reproduceable trained model as reported in their paper.
The MR of CSP increases to 14.5% under Reasonable setup
with runtime of about 0.22 seconds per image as illustrated in
Table I. Our method with the same input image size of 1600 ×
800 achieves a significantly lower MR of 10.9% with a much
lower runtime 110 ms per image. This comparison shows that
our proposed method can achieve better detection performance
than other pedestrian methods using same resolution image as
input, and demonstrates the effectiveness of proposed semantic
segmentation aggregation modules. At the same time, our pro-
posed method also demonstrates a new approach for reducing
computational complexity of pedestrian detection algorithm
which is using low resolution input images. Utilization of
low resolution input images offer several advantages in many
real-world systems, including less storage requirement, low
requirement for CMOS sensor and low power consumption,
etc. [29]. The backbone network is another factor that deter-
mines the computational complexity. The FLOPs of VGG-16
used in our method is about 4 times higher than ResNet-50
used in CSP, but our method still runs about 2 times faster
than CSP on image resolution of 1600 × 800. This means
that the extra computations in CSP are incurred when fusing
feature maps from intermediate layers. Similar conclusion
can be obtained for CSID. The re-trained SDS-RCNN (i.e.,
SDS-RCNN_1 and SDS-RCNN_2) achieve inferior inference
efficiency compared to the proposed learning architecture (i.e.,
2.5 times slower than ours) on image resolution of 1600 ×
800. This is because SDS-RCNN uses VGG-16 network as
feature extractor in R-CNN stage which induces much higher
computational complexity than ours. It can observed that the
extension of GDFL, i.e., CA-GDFL, requires about 0.466
seconds to process one image which is about 4 times slower
than the proposed method. As indicated in [50], CA-GDFL is
slightly faster than GDFL, which implies that GDFL needs at
least 0.466 seconds to process one image from CityPersons
dataset. The detection performance and runtime comparisons
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TABLE II

ABLATION EXPERIMENTS FOR RPN STAGE ON CITYPERSONS DATASET. �INDICATES CORRESPONDING COMPONENT IS USED

TABLE III

DETECTION PERFORMANCE AND TEST TIME OF PROPOSED METHOD WITH DIFFERENT IMAGE SIZES ON CITYPERSONS DATASET

TABLE IV

DETECTION PERFORMANCE AND TEST TIME COMPARISON WITH STATE-
OF-THE-ARTS ON CALTECH DATASET

demonstrate that the proposed method can achieve competi-
tive performance and inference efficiency than state-of-the-art
methods and can serve as a strong baseline for future research.

The visualization comparisons of vanilla RPN, our re-
trained SDS-RPN and Ours-SSAM-RPN are shown in Fig. 10.
It can be observed that Ours-SSAM-RPN consistently obtains
better confidence on both pedestrians. More concretely, the
visibility of the right pedestrian is only 0.162, which means
most of its body is occluded. SDS-RPN obtains confidence
with 0.921 which is slightly higher than vanilla RPN, while
Our-SSAM-RPN obtains confidence with 0.999. This demon-
strates the robustness of Our-SSAM-RPN for detecting heavily
occluded pedestrians.

2) Caltech Dataset: Table IV shows the detection perfor-
mance and test time comparisons with state-of-the-art methods
on Caltech dataset. It can be observed that the proposed
method achieves slightly higher MR than RepLoss and CSP on
Reasonable setup. However, our proposed method obtains bet-
ter performance with large margin when evaluated on Heavy
and All setups, which are 7.4% and 5.4% lower than CSP.
In addition, our proposed method can run about 2X faster than
CSP on the same platform. These performance achievement
and test time efficiency further demonstrate the advantages of
the proposed method over state-of-the-art methods.

D. Ablation Study

In this sub-section, we discuss the ablative analysis of the
proposed method on CityPersons dataset.

1) Group Convolution (GC): GC is exploited in classifica-
tion and bounding box regression branch of RPN head which
is labelled as GC in Fig. 1. As shown in Table II, GC leads
to lower computational complexity, where test time with only
GC checked reduces from 95ms per image to 89 ms per image,
but at the cost of slight performance degradation.

2) Semantic Segmentation to Feature Module (SS2FM):
When SS2FM is applied, the MR is lower than the case when
only GC is applied in most evaluation setups as shown in
Table II, especially for the Heavy occlusion setup. This indi-
cates that the proposed SS2FM can learn better convolutional
features for proposal generations.

3) Semantic Segmentation to Confidence Module (SS2CM):
From Table II, it can be observed that MR becomes much
lower when SS2CM is exploited. When only components
in Head_C5 are applied, the MR is 13.1% on Reasonable
setup which is about 3.1% lower than vanilla RPN. When
evaluating on Heavy occlusion setup, the performance gain is
about 4.2% over vanilla RPN. When GC and SS2CM is used,
the performance becomes worse compared to the case where
only Head_C5 is employed. This implies that SS2FM plays an
important role to improve detection performance. As shown in
last row of Table II, further performance gain is obtained when
all of the proposed components are exploited. In particular,
the MR value of proposed SSAM-RPN is about 4.9%, 5.6%,
5.4% and 5.6% lower than vanilla RPN on Reasonable, Heavy
occlusion, Partial occlusion and All setup respectively. We
also list the MR when only classification or semantic segmen-
tation confidence is used as pedestrian proposal confidence
in Table II. It can be observed that MR with only semantic
checked in the Confidence column becomes much higher on all
evaluation setups than fused confidence, especially on Small
setups. This is due to the fact that semantic segmentation
confidence for small pedestrians are easily affected by larger
pedestrian regions in the semantic segmentation result, since
high semantic segmentation confidence would be extracted
from inner larger pedestrian regions. The latter are actually
false detections for small pedestrians.
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4) Test Image Size: Image upscaling during testing has been
used as a simple strategy to improve detection performance in
state-of-the-art pedestrian methods including Faster R-CNN,
Faster R-CNN+Seg, OR-CNN, RepLoss, CSP and CSID.
Table III lists the detection performance and test time of the
proposed method with different test image size. It can be
observed that the lowest MR is achieved at image size of 1600
× 800 in most of evaluation setups. Although larger image
size is used, the MR with image size of 2048 × 1024 is much
higher than MR with image size of 1600 × 800, which implies
that the semantic segmentation feature map is more accurate
for small pedestrians and hence better semantic segmentation
confidence is obtained. This can be verified from Large setup
in Table III where the MR with image size of 2048 × 1024 is
about 4.2% higher than MR with image size of 1600 × 800,
while it is only 0.6% and 1.4% higher on Small and Medium
setups. This also implies that larger input image is required for
achieving better detection performance for Small and Medium
pedestrians. It is also worth noting that the downsample ratio
of detection feature maps is 1/8, which means that there are at
most 10 pixels height for Medium pedestrians in the obtained
semantic segmentation results that makes it challenging to
extract meaningful semantic segmentation confidence. When
using smaller image size such as 1024 × 512, the performance
drop on Small setup is much larger than on Medium and Large
setups, as more pedestrian details are lost for small pedestrians.
In addition, the pedestrians in Small setup (i.e., pedestrian
height ∈ [50, 75] in original image) has only semantic support
region with pixel height ∈ [3.1, 4.7] in semantic segmentation
feature map, which is too small for extracting useful semantic
segmentation confidence.

5) Anchor Matching Point: The detection performance with
different matching point between feature map and anchors
are shown in Table VI. d represents the distance between
anchor upper boundary and matching point. It can be observed
that the best detection performance is achieved when d is set
to 0.25h, which is the anchor upper center. The commonly
used matching point, i.e., d = 0.5h, obtains much worse
performance than our setting, especially for heavily occluded
pedestrians.

6) R-CNN Pooling: Table V shows the MR of the proposed
method with different pooling setups when extracting features
for R-CNN. The digit with ROIAlign is the sample ratio
of ROIAlign pooling [17]. It can be observed that obvious
performance gains are obtained on all evaluation setups when
ROIAlign pooling is exploited. This indicates that some dis-
criminative information are lost in ROI pooling operation,
especially for small pedestrians, which is the reason for the
pooling bin collapse described in [46].

7) Influence of Semantic Segmentation Results: Since we
use weakly box-wise annotations to supervise the task of
semantic segmentation, there are some prediction errors in
semantic segmentation results as shown in Fig. 5b. Intuitively,
the perfect semantic segmentation result should have posi-
tive influence on detection performance. In order to verify
this assumption, we replace the learned semantic segmenta-
tion result using ground truth (GT) semantic segmentation
with box-wise annotations in the SS2CM. The corresponding

TABLE V

DETECTION PERFORMANCE AND TEST TIME OF PROPOSED METHOD
WITH VARIED POOLING SETUPS ON CITYPERSONS DATASET

TABLE VI

DETECTION PERFORMANCE OF SSAM-RPN WITH VARIED MATCHING

POINT BETWEEN FEATURE MAP AND ANCHORS ON

CITYPERSONS DATASET

detection performance of our SSAM-RPN and Ours are listed
in Table VII. It can be observed that all detection with GT
semantic segmentation improves except for SSAM-RPN in
Large setup. This may be caused by the problem of misalign-
ment when resizing GT semantic segmentation. The Small
setups have the largest performance improvement when using
GT semantic segmentation. This is because in the learned
semantic segmentation results, the Small pedestrian regions are
too small to provide sufficient semantic segmentation support
which affects its detection performance.

8) Backbone Network Selection: VGG [53], InceptionNet
[66], ResNet [27], and Densenet [67] are well-known networks
for object classification and serve as good backbone networks
for object detection. To re-purpose the classification task to
detection task, an additional step to construct high resolution
feature maps is required. This plays an important role in
the overall accuracy and computational complexity of object
detection. ResNet reformulates the network layers as learning
residual function with reference to the layer inputs. Incep-
tionNet introduces factorized convolution in order to reduce
the computational complexity. DenseNet proposes to connect
each layer to every other layer in a feed-forward fashion which
can strengthen feature propagation and feature reuse. Although
these three backbone networks achieve better performance
or lower computational complexity for image classification
compared to the VGG-16 network, they turn out to be inferior
options for the proposed pedestrian detection architecture. Our
experiments show that these backbone networks would incur
degraded accuracy or longer test time when incorporated in
the proposed learning architecture as shown in Table VIII.
Note that we have tailored ResNet-50, InceptionNet-V3 and
DenseNet-169 by removing downsampling function of last
two convolution blocks to ensure that the scale of the final
feature map is 1/8 of the input image size, which is consistent
with our tailored VGG-16 backbone network. This additional
step to construct high resolution feature maps is required to
re-purpose the classification task of the original models to
detection task.

It can be observed from Table VIII that the proposed
learning architecture with these three backbone networks
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TABLE VII

DETECTION PERFORMANCE WITH GROUND TRUTH (GT) BOX-WISE ANNOTATIONS OF PROPOSED METHOD ON CITYPERSONS DATASET

TABLE VIII

COMPUTATIONAL BURDEN AND TEST TIME OF CSP AND PROPOSED METHOD WITH VARIED BACKBONE NETWORKS ON CITYPERSONS DATASET. ALL

BACKBONE NETWORKS ARE TAILORED TO THE PROPOSED ARCHITECTURE. THE TEST TIME IS OBTAINED ON NVIDIA 1080TI GPU

achieved much higher MR value under Reasonable setup.
This is because in the original three backbone networks, the
feature map size from the last convolution block is 1/32
of the input image size. When the networks are tailored to
the proposed architecture, the feature map size from the last
convolution block increases to 1/8 of the input image size.
This will significantly affect the feature learning capability
of the networks, which were originally designed for image
classification. In contrast, our tailoring strategy only influences
feature computation from conv5 layers of VGG-16, in which
the feature map size increases from 1/16 to 1/8 of the input
image size. Thus, the tailoring strategy on VGG-16 has mar-
ginal influence on feature learning, enabling it to obtain better
features for detection compared to the tailored ResNet-50,
InceptionNet-V3 and DenseNet-169.

In addition to detection performance, it can be observed
from Table VIII that the GFLOPs of the proposed architec-
ture with tailored VGG-16 is lower than that with tailored
ResNet-50 and InceptionNet-V3. This is because the tailoring
strategy has significantly increased the complexity of ResNet-
50 and InceptionNet-V3 by a factor 4x for the penultimate
convolution block and 16x for the last convolution block. Since
our tailoring strategy induces high computational complexity
for backbone networks, one may consider other ways to
obtain the feature maps generated by backbone networks for
detection. We analysed the GFLOPs of CSP with ResNet-50
as backbone network and reported the results in Table VIII.
It can be observed that the GFLOPs of CSP is much higher
than Ours_VGG-16 even though ResNet-50 has lower compu-
tational complexity. Most of the computations come from the
feature maps combination as the ResNet-50 layers contribute
to only about 11% of the total computations. Furthermore, the
tailored DenseNet-169 has lower GFLOPs than the tailored
VGG-16 but requires longer test time. This is because the
vanilla DenseNet-169 implementation requires a significant
amount of GPU memory as feature maps quadratically grow
with network depth [67]. A memory-efficient DenseNet-169
implementation [68] has been previously proposed to reduce
its memory requirement and this is widely used in the

literature. However, this implementation comes at the cost
of higher computation time [69]. In addition, the tailored
DenseNet-169 has many more layers (e.g., convolution and
batchnorm layers) than the tailored VGG-16, and hence it
requires more memory accesses leading to longer test time
as reported in [70].

Our experiments and analysis conclusively show that
although the VGG-16 backbone network is not the least
compute intensive model for classification task, it is the
best backbone network for the proposed learning architecture
for pedestrian detection as it leads to lowest computational
complexity, and is able to achieve good accuracy on low
resolution input images.

9) The Inception Module From InceptionNet: The inception
modules in InceptionNet are able to achieve high compu-
tational efficiency for image classification. However, there
are some limitations when inception modules are used for
pedestrian detection. Firstly, the inception module mainly
focuses on using smaller spatial filters (e.g., 3 × 3 or 1 ×
1) to replace large spatial filters (e.g., 5 × 5 or 7 × 7).
However, the filters in VGG-16 (i.e., 3 × 3) are already small
spatial filters. A possible way of using inception module is to
employ a combination of 3 × 1 convolution followed by 1 × 3
convolution. As highlighted in [66], these asymmetric convo-
lutions obtain good results on medium grid size (e.g., m × m,
where m ranges between 12 and 20). However, feature maps
for CityPersons dataset is 200 × 100 for input image size of
1600 × 800. Secondly, as pointed out in [66], the asymmetric
convolution does not work well on early network layers
and only obtains good results by using 1 × 7 convolution
followed by 7 × 1 convolution for image classification in
deeper network layers. However, these kinds of filters that
are used in deep network layers are not suitable for pedestrian
detection. This is because global information is necessary for
obtaining good result for image classification, while more
detail information are required for detecting small pedestrians.
For example, a 20 × 50 pixels pedestrian in original image
size of 2048 × 1024 only corresponds to about 2 × 5 region in
our setting (i.e., input image size of 1600 × 800). The larger
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asymmetric filters in deeper network layers would introduce
too much non-pedestrian information (e.g., background) and
hence affect detection accuracy. Thirdly, the inception module
induces much more layers, which will increase the test time
due to large number of memory accesses.

V. CONCLUSION

In this work, we propose a unified neural network architec-
ture to explore the semantic segmentation result for pedestrian
detection. Two semantic segmentation aggregation modules,
i.e., Semantic Segmentation to Feature Module and Semantic
Segmentation to Confidence Module, are proposed to fully
exploit features from semantic segmentation result. In addition,
a simple and effective anchor matching point transfer is
proposed to alleviate the problem of feature misalignment for
heavily occluded pedestrians. We conduct extensive experi-
ments to demonstrate the effectiveness of our proposed work.
Our proposed pedestrian detector can achieve competitive
detection performance with the highest inference efficiency
on both CityPersons and Caltech datasets.
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