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Constrained Multi-View Video Face Clustering
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Abstract— In this paper, we focus on face clustering in videos.
To promote the performance of video clustering by multiple
intrinsic cues, i.e., pairwise constraints and multiple views, we
propose a constrained multi-view video face clustering method
under a unified graph-based model. First, unlike most existing
video face clustering methods which only employ these
constraints in the clustering step, we strengthen the pairwise
constraints through the whole video face clustering framework,
both in sparse subspace representation and spectral clustering.
In the constrained sparse subspace representation, the sparse
representation is forced to explore unknown relationships. In the
constrained spectral clustering, the constraints are used to guide
for learning more reasonable new representations. Second, our
method considers both the video face pairwise constraints as
well as the multi-view consistence simultaneously. In particular,
the graph regularization enforces the pairwise constraints to be
respected and the co-regularization penalizes the disagreement
among different graphs of multiple views. Experiments on three
real-world video benchmark data sets demonstrate the significant
improvements of our method over the state-of-the-art methods.

Index Terms— Video face clustering, pairwise constraints,
sparse subspace representation, multi-view clustering.

I. INTRODUCTION

V IDEO face clustering aims to divide the facial images
into different subsets according to different persons. This

technique can be used in many applications, such as video
summarization [1], [2], automatic cast listing in feature-length
films [3], [4], and automatic collection of large-scale face
datasets [5], [6]. However, the task of video face clustering
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is still very challenging for the following reasons. First,
in real-world videos, the appearances of faces often vary
significantly due to the lighting conditions, especially light
angles which often change drastically. Second, one person
might have very different facial expressions and head poses,
which change the appearances of faces. Moreover, partial
occlusions and hair style changes in the video also increase the
difficulties for video face clustering. Traditional image-based
face clustering methods often distinguish different individuals
only based on the facial similarities. In video face clustering,
there is some prior knowledge which can be used to improve
the performance. Cour et al. [7] use scripts and subtitles to
obtain the cues as to which characters are present. These
cues for character presence are then combined with facial
similarities to help face clustering. However, this text-based
information is not always available. In contrast, there are two
pairwise constraints inherent in videos, i.e., faces from the
same face track are likely to be from the same person, while
faces can not be from the same person if they appear together
in the same video frame. These two constraints are named as
MUST-LINK and CANNOT-LINK constraints, respectively.
Some existing methods [3], [5], [6] use these constraints in
video face clustering, and demonstrate their values. However,
these methods only consider these constraints in clustering,
and ignore the constraints in representation. In our work,
we take advantage of them in the sparse subspace representa-
tion to better explore unknown face relationships. Afterwards,
the constraints are reused in the spectral clustering step to
ensure more accurate clustering result.

On the other hand, traditional face clustering/recognition
methods mainly focus on obtaining a good distance metric
for representing the structure of inter-personal dissimilarities
and intra-personal similarities [3], [5], [8]–[10]. However, the
metric-based clustering methods are sensitive to the quality of
videos since they always have a huge uncertainty in real-world
cases. To relieve this limitation, we make use of multiple
features simultaneously. These features often describe facial
images from different views. Although individual views might
not be sufficient on their own to give a good enough clustering
result, they often provide complementary information to each
other which can lead to improved performance on the
clustering task. Recently, the efficiency of the multi-view
methods has been demonstrated [11]–[13]. However, most
multi-view methods do not consider the prior constraints in
clustering, which are usually critical in many applications.
In this paper, we introduce pairwise constraints into the
multi-view clustering to effectively exploit the complementary
information in different views.
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In this paper, we provide a Constrained Multi-view Video
Face Clustering (CMVFC) method, which combines the
pairwise constraints in both sparse subspace representation
and spectral clustering procedures. Moreover, we also
introduce the multi-view clustering fashion to exploit multiple
features. We effectively exploit the pairwise constraints and the
multi-view consistence as regularization simultaneously. The
experiments show that the proposed method outperforms
the state-of-the-art methods on three real-world benchmark
datasets.

II. RELATED WORK

We give a brief introduction about some face clustering
techniques and some general clustering methods based on
sparse subspace representation or multiple views, which are
highly related to our work.

1) Video Face Clustering: Most existing video face
clustering methods focus on obtaining a good representation
for the structure of inter-personal dissimilarities. For example,
Fitzgibbon and Zisserman [3], [5] proposed an affine invariant
distance metric which is robust to a desired group of
transformations for video face clustering. Huang et al. [14]
proposed to cluster faces with multi-views in a video sequence.
They clustered video faces based on pose grouping results.
The multi-view in their work is a concept in geometry rather
than descriptor. The work [15] measures the face similarity
by mutual information and its extension [16] incorporates
pairwise constraints directly, replacing the elements of
similarity matrix with 1 for must-link and 0 for cannot-link
pairs. A more recent work on video face clustering with
pairwise constraints is presented in [6], which incorporates
pairwise constraints within a Hidden Markov Random Fields.
However, this work only utilizes the pairwise constraints in
clustering procedure with single feature. In contrast, we use
pairwise constraints in both sparse subspace representation
and spectral clustering to fully explore the constraints.
Moreover, we cluster the facial images under a multi-view
framework to exploit the complementary information.

2) Constrained Clustering: Clustering with pairwise
constraints has been attracting more and more attentions in
the machine learning and data mining communities. Generally,
there are two categories of methods using pairwise constraints
in clustering. The first category introduces the metric
learning fashion which aims to learn a Mahalanobis distance
that minimizes the distance between must-link samples
and maximizes the distance between cannot-link samples.
However, the metric learning step and clustering step are often
isolated in these methods, and thus the performance cannot
be guaranteed [6]. The second category adopts the traditional
centroid-based clustering methods, such as K-means [17], [18]
or Gaussian mixtures [19] to meet the pairwise constraints.
There exist few works to blend the pairwise constraints in a
natural way. The work in [20] simply uses the Gaussian kernel
as the affinity but replaces entries for must-link pairs with 1
and cannot-link pairs with 0. The work in [21] combines
must-link and cannot-link affinity by propagating the pairwise
constraints over the original affinity matrix. Instead of directly
modifying the affinity matrix [20], [21], we utilize the pairwise

constraints as regularization into spectral clustering which
directly aims to obtain a more reasonable representation.

3) Multi-View Clustering: Multi-view clustering is of great
importance since an abundance of complementary perspectives
and multi-view representations of data are often available. The
method in [12] develops multi-view spectral clustering via
generalizing the normalized cut from a single view to multiple
views. The authors gave a random walk based formulation
for the problem. The clustering algorithm in [22] creates a
bipartite graph and is based on the minimizing-disagreement.
However, it concentrates on the data with only two views. The
method in [11] uses Linked Matrix Factorization to fuse the
information from multiple graph sources. The authors in [13]
proposed a spectral clustering framework which co-regularizes
the clustering hypotheses, and propose the co-regularization
scheme to penalize the disagreement across different views.
The method in [23] employs Hilbert Schmidt Independence
Criterion (HSIC) to enhance the complementarity across dif-
ferent views. Our method introduces the pairwise constraints
into multi-view spectral clustering in an elegant manner, which
effectively exploits the pairwise constraints and the multi-view
consistence simultaneously.

4) Sparse Subspace Representation: There has been a
great interest in sparse representation during the last decade.
Wright et al. [24] use �1-norm minimization to deal with
missing or corrupted data in face recognition. Most of the
sparse representation literature assumes that the data lie in a
single linear subspace. Furthermore, Elhamifar and Vidal [25]
and Liu et al. [26] propose to use the sparse representation of
vectors lying on a union of subspaces to cluster the data into
separated subspaces. However, these methods do not consider
prior constraints in representation. In this paper, we intro-
duce pairwise constraints into sparse subspace representation,
aiming to better explore the face relationships for clustering.

5) Image Set Based Face Recognition: There are some face
recognition methods focusing on learning over facial image
sets [27]–[35], in which each test and training example is a set
of images of an individual’s face. These methods usually try to
design or learn different similarity metrics for matching image
sets (e.g., canonical angles between two subspaces [29]).
A video face track can be regarded as a facial image set.
Therefore, the set models (e.g., modeling each image set as a
manifold [30]) in these methods can be employed to represent
face tracks. Consequently, the corresponding similarity metrics
for image set can be utilized to cluster these face tracks.

III. FRAMEWORK OF OUR APPROACH

Fig. 1 shows the framework of our method. Given the
input video, we extract the faces for each frame, as shown
in Fig. 1 (b). In our work, we employ face detector to get
an initial face set. The face tracking technique is employed
to link the detected face. After detecting the faces, we align
them and extract the features of each facial image. The
constrained matrix as shown in Fig. 1(c) is built up based
on the must-link and cannot-link constraints. Next, the sparse
representation with these constraints is provided to obtain
the sparse coefficient matrix corresponding to each feature as
shown in Fig. 1(d). Finally, based on these constrained sparse
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Fig. 1. The framework of our method. From the input video (a), we extract the frames and detect the facial images (b). Then, we build up the must-link matrix
based on the face tracks and cannot-link matrix based on the frames. Meanwhile, we extract the multiple features for the detected facial images (c). Based
on these constraints and features, we perform our CMVFC algorithm in two steps, constrained sparse representation and constrained spectral clustering (d) to
get the clustering result (e).

representations, we apply multi-view spectral clustering with
pairwise constraints on the similarity matrix to get the final
clustering result.

A. Preprocessing

For face detection, one of the most important method is
proposed by Viola and Jones [36], which builds a successful
face detector running in real time. Any or more advanced
similar works can be easily integrated into our approach.
We employ the face tracking method in [37], which consists
of two metrics: histogram intersection and frame overlap.
For face alignment, the work in [38] which jointly aligns
complex images in a unsupervised manner is employed in our
framework. It has shown high quality results on the faces in
the Wild dataset [39], which is also under large variation of
head poses, lighting conditions, backgrounds as in the real-
world videos. To concentrate on face clustering approach, in
our work, we assume that a set of face windows are well
extracted. The preprocessing is similar to other video face
clustering methods [6], [40]. First, most false positives of face
detections can be easily eliminated by selecting the tracks with
a sufficiently large number of faces. Second, we manually
select the tracks corresponding to main characters to eliminate
the wrong detections.

B. Pairwise Constraints

Given a set of facial images F = { f1, f2, ..., fn}, where
n is the number of the total faces, we extract a d-dimensional
feature vector xi ∈ R

d for each image fi , forming the cor-
responding feature matrix X = [x1, x2, ..., xn]. Two matrices
are built up to describe the pairwise constraints of the faces,
i.e., the must-link matrix M ∈ R

n×n and the cannot-link
matrix C ∈ R

n×n . The matrix M represents the must-link
constraints, where the elements corresponding to the face pairs
in the same track are set to 1 while others are set to 0.

The matrix C represents the cannot-link constraints, the
elements of which corresponding to the face pairs belonging
to the overlapped tracks are set to −1 while others are set to 0.
For convenience, we also define M={(xi , x j ) ∈M|mij = 1}
and C = {(xi , x j ) ∈ C|ci j = −1} as the sets of the must-link
and cannot-link constraints, respectively.

C. Constrained Sparse Subspace Representation

Ideally, the face xi can be sparsely represented by a
small subset of facial images from the same person in the
dataset [24], [25]. The relationship can be written as

xi = Xai s. t. aii = 0, (1)

where ai = [a1i , a2i , ..., ani ]T, and the constraint aii = 0
eliminates the trivial solution of representing a facial image
with itself. The coefficient vector ai should have nonzero
entries for a few facial images from the same person and zeros
from the rest. In other words, the matrix X is a self-expressive
dictionary in which each facial image can be represented by
a linear combination of the others.

Some relationships among faces have been known from the
must-link and the cannot-link constraints. Therefore, we pay
attention to exploring the unknown relationships by utilizing
the prior constraints

xi = Xai s. t. a j i = 0, ∀(x j , xi ) ∈M ∪ C. (2)

The reason to eliminate the a j i for (x j , xi ) ∈M is to avoid the
representation using faces in the same track. Consequently, the
sparse representation is forced to relate the faces with unknown
relationships. The reason to eliminate the a j i for (x j , xi ) ∈ C
is to avoid the representation between faces in the same video
frame. On the other hand, the known must-link and cannot-
link constraints are later re-exploited in spectral clustering
(Eq. (13)).
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One limitation of Eq. (2) is that the representation of
xi in the dictionary X is not unique in general. Since
we are interested in efficiently finding a nontrivial sparse
representation of xi in the data set X, we use the tightest
convex relaxation of the �0-norm, i.e.,

min
∥
∥ai

∥
∥

1

s. t. xi = Xai and a j i = 0, ∀(x j , xi ) ∈M ∪ C. (3)

Moreover, considering clustering of data points that are
contaminated with sparse outlying entries and noise [25], the
constrained sparse representation is obtained by the following
equation

min
∥
∥ai

∥
∥

1 + λe||ei ||1 + λz ||zi ||2
s. t. xi = Xai + ei + zi and aj i = 0, ∀(x j , xi ) ∈M ∪ C,

(4)

where ei ∈ R
d and zi ∈ R

d are the error and noise,
respectively. The two parameters λe and λz balance the three
terms in Eq. (4). Without loss of generality, we can rewrite
the sparse optimization problem (4) for all faces in the
following matrix form

min
∥
∥A

∥
∥

1 + λe||E||1 + λz ||Z||2F
s. t. X = XA+ E+ Z and a j i = 0, ∀(x j , xi ) ∈M ∪ C,

(5)

where A = [a1, a2, ..., an] ∈ R
n×n is the coefficient

matrix, the i th column of which corresponds to the sparse
representation of xi . More specifically, each column of A
corresponds to a new representation of a facial image, whose
nonzero elements ideally correspond to faces from the same
person. Since the optimization problem in Eq. (5) is convex
with respect to the variables A, E and Z, it can be solved
efficiently using convex programming tools [41], [42].

D. Constrained Spectral Clustering

Before introducing the multi-view clustering, we first depict
our face clustering method using the single feature in this
subsection. With Eq. (5), we obtain a sparse coefficient
matrix A for the whole facial image set. Afterwards, we build
a weighted graph G = (V, E, W), where V denotes the
set of n nodes in graph G corresponding to the set of n
faces, and E denotes the edges between nodes. W ∈ R

n×n

is a symmetric nonnegative similarity matrix representing the
weights of the edges. Typically, an ideal similarity graph G
should have connections corresponding to the same person
and have no connections corresponding to different persons.

In the sparse representation solution A from
subsection III-C, nonzero elements can be regarded as
a measurement of the relationships between faces. This
provides a choice of constructing the similarity matrix [25],

W = |A| + |A|T. (6)

We normalize A as ai ← ai/‖ai‖∞ to make sure the weights
in similarity graph are of the same scale. A straightforward
combination way [43] is incorporating the must-link and

cannot-link constraints into the similarity matrix directly. It can
be written as

Wpc =W+ ζM+ ηC, (7)

where the trade-off factors ζ and η encode the belief degrees
for the must-link and cannot-link constraints, respectively.
However, instead of directly combining the two pairwise
constraint matrices into the similarity matrix, we regularize
the pairwise constraints in spectral clustering which directly
aims to obtain a more reasonable embedding representation.

For the k-way spectral clustering with a single view, we aim
to obtain a new embedding representation U of the original
data X by optimizing the following objective function [44]

argmax
U∈Rn×k

T r(UTLU)

s. t. UTU = I, (8)

where L = D−1/2WD−1/2 is the normalized graph Laplacian
matrix, and D is a diagonal matrix with element
dii = ∑n

j=1 wi j . For convenience, we denote di = dii .
W is the similarity matrix, which is often constructed by
the original feature X. Tr(·) denotes the trace of a matrix.
Note that, different from the work in [13], we use the
constrained sparse subspace representation in Eq. (6) to
construct the similarity matrix W instead of the original
feature based on Euclidean distance or kernels. Therefore,
the pairwise constraints are incorporated into the similarity
matrices to boost the clustering performance. With each row
of U = [u1, u2, ..., un]T acting as a new representation of
an original data point, we cluster them into k clusters with
K-means algorithm.

Considering the pairwise constraints, a regularized term is
designed to ensure that the representation of must-link pairs
are close and the representation of cannot-link pairs are far
away from each other. We denote the distance of two points
ui and u j according to the two constraint matrices, M and C,
as follow

dml(ui , u j ) = || ui
√

dml
i

− u j
√

dml
j

||2, (9)

and

dcl(ui , u j ) = || ui
√

d̄cl
i

− u j
√

d̄cl
j

||2, (10)

where the distance is normalized by dml
i (d̄cl

i ) and dml
j (d̄cl

j )
in order to reduce the impact of popularity of nodes as in
traditional graph-based learning [45], [46], and the effective-
ness of the normalized technique is well proved. Accordingly,
the pairwise constraints as regularization is defined as:

R(U;M, C) = 1

2

n
∑

i, j=1

|| ui
√

dml
i

− u j
√

dml
j

||2mij

+ 1

2

n
∑

i, j=1

|| ui
√

d̄cl
i

− u j
√

d̄cl
j

||2ci j

= T r(UT(I − Lml)U)+ Tr(UT(I− L̄cl )U),

(11)
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where Lml is the normalized graph Laplacian matrix
corresponding to the must-link constraint matrix M. Note that

we denote L̄cl = D̄cl
−1/2

CD̄cl
−1/2

as the new graph Laplacian
corresponding to the cannot-link matrix C with d̄cl

i = ¯dcl
ii =∑n

j=1 |ci j |. The absolute operator is to handle a graph with
negatively weighted edges, which is proved by [47]. By ignor-
ing the constant additive term, Eq. (11) can be rewritten as:

R(U;M, C) = −T r(UTLml U)− Tr(UTL̄clU). (12)

Intuitively, minimizing the term in Eq. (12) will enforce
the new representation U to simultaneously meets the graphs
corresponding to the must-link matrix M and the cannot-link
matrix C.

For our constrained clustering method, we combine the
pairwise constraint regularization in Eq. (12) into Eq. (8) as a
new objective function

argmax
U∈Rn×k

T r(UTLU)+ λml Tr(UTLml U)+ λcl Tr(UTL̄clU)

s. t. UTU = I, (13)

where λml and λcl encode the different belief degrees
for the must-link and cannot-link constraints, respectively.
The Eq. (13) can be reformulated as a standard spectral
clustering objective function with a new combined graph
Laplacian

argmax
U∈Rn×k

T r(UTLcst U)

s. t. UTU = I (14)

where Lcst = L+λmlLml +λcl L̄cl is the combined Laplacian.
Thus, both the must-links and cannot-links are incorporated
into the standard spectral clustering framework, which can be
efficiently solved by eigen-decomposition.

E. Constrained Multi-View Spectral Clustering

The constrained spectral clustering achieves state-of-the-art
performance by exploiting the pairwise constraints both
in sparse subspace representation and spectral clustering
steps. We further improve the approach into the multi-view
framework, named Constrained Multi-view Video Face
Clustering (CMVFC). To distinguish our method from the
method [14] which defines view in a geometry point of view,
we define the multi-view face clustering of our interest as
follow:

1) Multi-View Face Clustering: For each of the n facial
images detected from the input video, we extract their V types
of features. The task of multi-view face clustering is to cluster
these facial images by simultaneously utilizing the matrices
X(1), X(2), ..., X(V ), with X(v) = [x(v)

1 , ..., x(v)
n ]T corresponding

to the v th type of feature matrix.
Considering the multi-view setting and inspired by the

method [13], we co-regularize the disagreement between dif-
ferent views, and extend it to our constrained multi-view
spectral clustering. We define the eigenvector matrix U(v) as
the new data representation derived from the v th original
feature. Encouraging the pairwise similarity to be similar
across the V views will enforce the clustering results to be the

same across all the features. For any two similarity matrices
corresponding to U(v) and U(w), the measure of disagreement
between them is defined as

D(U(v), U(w)) = ‖ WU(v)

||WU(v)||2F
− WU(w)

||WU(w)||2F
‖2F , (15)

where WU(v) is the similarity matrix for U(v). || · ||F denotes
the Frobenius norm of a matrix. The similarity matrices are
normalized by their Frobenius norms, which makes them to
be comparable across different similarity matrices. With the
linear kernel k(ui , u j ) = uT

i u j as the similarity measure in

Eq. (15), we have WU(v) = U(v)U(v)T and ||WU(v)||2F = k,
where k is the number of clusters. The Eq. (15) can be rewrit-
ten as follow by ignoring the constant additive and scaling
terms

D(U(v), U(w)) = −Tr(U(v)U(v)TU(w)U(w)T). (16)

The term should be minimized to ensure the clustering
consistence across all the different views. For our constrained
multi-view spectral clustering method, we combine the
disagreement penalty term D(·) in Eq. (16) and the constraint
regularization term R(·) in Eq. (12) into Eq. (8), then the
new objective function, i.e., constrained multi-view spectral
clustering is obtained as

argmax
U(1),...,U(V )∈Rn×k

∑

1≤v≤V

T r(U(v)TL(v)U(v))

+ α
∑

1≤v≤V

Tr(U(v)TLml U(v))

+ β
∑

1≤v≤V

Tr(U(v)TL̄cl U(v))

+ γ
∑

1≤v,w≤V ;v 	=w

Tr(U(v)U(v)TU(w)U(w)T
)

s. t. U(v)TU(v) = I, ∀ 1 ≤ v ≤ V , (17)

where α, β and γ are trade-off factors for the must-link
constraints, cannot-link constraints and clustering agreement
across different features, respectively. The objective function
in Eq. (17) tries to balance a trade off between the individual
spectral clustering objectives, the agreement of each pair
of view-specific new representations U(v)’s, as well as the
pairwise constraints.

We optimize it by alternating maximization cycling over the
views. Specifically, with all but one U(v) fixed, we have the
following optimization problem

argmax
U(v)∈Rn×k

Tr{U(v)TLnewU(v)}

with

Lnew = L(v) + αLml + βL̄cl + γ
∑

w 	=v

U(w)U(w)T. (18)

While by denoting Lnew as the new graph Laplacian, it is
a standard spectral clustering objective on view v.

We initialize all U(v), 2 ≤ v ≤ V by solving the spectral
clustering problem for each single view. Thus, the objective
of Eq. (17) for the first view U(1) can be solved given all
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other U(v). The optimization is then cycled over all views
while keeping the previously obtained U(·)s fixed. Since the
objective is nondecreasing with each iteration, the convergence
is guaranteed. In practice, we monitor the convergence is
reached within less than 5 iterations.

F. Computational Complexity

The major computation of CMVFC is composed of three
parts, i.e., sparse subspace representation, iteration of updating
each view-specific eigenvectors and the final K-means
clustering. For simplicity, we suppose the dimensionality of
each view is M . The computation complexity of sparse
subspace representation is O(M N2 + N3) [42] for one
view, where N is the number of samples. The computation
complexity of eigenvalue decomposition is O(N3), hence the
complexity of all views’ eigenvectors is O(T1V N3), where
V is the number of views and T1 is the number of iterations.
The final step of spectral clustering is using K-means, and the
computational complexity of K-means is O(T2 K N), where
T2 and K are number of iterations and number of clusters,
respectively. Finally, the complexity of the proposed method
is O(V M N2+V N3+T1V N3+T2 K N). In practice, the main
computation complexity (O(V M N2 + V N3)) is decided by
sparse subspace representation step since T1, T2, V and K are
often much smaller than M and N .

IV. EXPERIMENTS

In this section, we present experimental results and
compare our approach with several state-of-the-art face
clustering methods on three datasets. Four main evaluation
metrics are used for comparison. After giving experimental
settings in subsection IV-A, we first analyze the key
components of our method in subsection IV-B. Then, both
the qualitative and quantitative results on the three benchmark
datasets are given in subsection IV-C. We also validate the
robustness of our method by varying sampling numbers per
track and considering the detection error in subsection IV-D
and subsection IV-E, respectively. Finally, we test the
parameter tuning of our method in subsection IV-F.

A. Experimental Settings

1) Datasets: We conduct our experiments on three datasets.
The dataset Notting-Hill [6], [48]–[50] is derived from the
movie “Notting-Hill”. Faces of 5 main casts are used,
including 4660 faces in 76 tracks. The original dataset
consists of the facial images of the size of 120×150.
To reduce the computational cost and the memory require-
ments, we downsample each facial image to 40×50 and get the
2000D vector as the intensity feature. We build up the dataset
TBBTS06E12 from the Season 6 Episodes 12 of TV series
“The Big Bang Theory”. The detected faces of 9 main casts
are used, including 17168 faces in 385 tracks. Similar to the
dataset Notting-Hill, we downsample facial images to 50×50
and use the 2500D vector as intensity feature. The third
dataset is YOUTUBE-6, which is a part of YouTube Face
Dataset [51]. The faces are from different videos and thus
it is more challenging than the others. Note that only face
tracks are provided but no frame indices for the faces in

this dataset. So there are no cannot-link constraints. We select
the individuals with the number of face tracks being larger
than 5. Finally, we get the facial images corresponding to
8 people, each of whom has 6 face tracks. We also downsample
the facial images to 50×50 and use the 2500D vector as
intensity feature.

2) Features: All compared methods use the intensity
feature except the CMVFC. For our multi-view method, three
types of features are employed in our experiments: intensity,
LBP [52], [53] and Gabor [54], [55]. The standard LBP fea-
tures are extracted from 72×80 loosely cropped images with a
histogram size of 59 over 9×10 pixel patches. Gabor wavelets
are extracted with one scale λ = 4 at four orientations
θ = {0°, 45°, 90°, 135°} with a loose face crop at a resolution
of 25×30 pixels. A null Gabor filter includes the raw pixel
image in the descriptor. All descriptors except the intensity are
scaled to unit norm, and the dimensionality of each descriptor
is reduced with PCA to 1536 dimensions, and zero-meaned.
In HMRF-com, we follow the same setting as [6]. PCA is
used to project the original scale feature space to a
lower dimensional space which is equal to the number of
clusters.

3) Comparisons: We compare our algorithm, CMVFC,
to several baselines and state-of-the-art methods. Moreover,
we test these algorithms in four cases: with no-links, with
only cannot-links, with only must-links and with all-links,
respectively. All the comparisons are devised for incorporating
with constraints except SSC [25]. Such a setting provides a
clear view of effects of different constraints. The experiments
are repeated 10 times, and the mean value and standard
deviation are reported. Specifically, the comparisons include
the following approaches:
• SSC [25]: The sparse subspace clustering method,

which is a special case of our CS-VFC (without using any
constraints). Thus, we do not show the result explicitly.
• CSC [56]: The constrained spectral clustering algorithm,

which can be interpreted as finding the normalized min-cut of
a labeled graph.
• CSC-AP [21]: The constrained spectral clustering algo-

rithm through affinity propagation, which propagates the pair-
wise constraints information over the original affinity matrix.
• MI-VFC [16]: The method uses a novel formulation of

the mutual information as a facial image similarity criterion.
• ULDML [40]: The method learns a Mahalanobis metric

through the logistic regression, in which positive pairs are
generated based on the must-link constraints, while negative
pairs based on cannot-link constraints. Then the K-means is
employed based on the new metric.
• HMRF-com [6]: The latest algorithm focusing on video

face clustering, which incorporates the pairwise constraints
into a generative clustering model based on Hidden Markov
Random Fields (HMRF-com).
• FeatConcate: The method which concatenates all the

three types of features and then clustering with the proposed
single-view clustering method.
• CS-VFC: The constrained single-view clustering method

proposed in this paper.
• CMVFC: Our constrained multi-view clustering method.



CAO et al.: CONSTRAINED MULTI-VIEW VIDEO FACE CLUSTERING 4387

TABLE I

COMPARISON OF CONSTRAINTS IN DIFFERENT STEPS ON NMI AND

ACCURACY (%) FOR CS-VFC

TABLE II

COMPARISON OF CONSTRAINTS IN DIFFERENT STEPS ON NMI AND

ACCURACY (%) FOR CMVFC

We use the authors’ codes of methods CSC, CSC-AP,
HMRF-com and ULMDL. For MI-VFC, we have implemented
the code by ourselves.

4) Evaluation Metrics: Following the convention of the
clustering, we set the number of clusters to be the ground-
truth number of classes for all the compared methods. The
clustering quality is evaluated by 2 standard measurements,
i.e., Normalized Mutual Information (NMI) [57] and
Accuracy. The 2 metrics are employed to assess different
aspects of a given clustering result. For each of the metrics,
the higher it is, the better the performance is. The accuracy
is calculated based on confusion matrix, which is derived
from the match between the predicted labels of all faces and
the ground-truth labels. The NMI as the clustering quality
evaluation measure, gives the mutual dependence of the
predicted clustering and the ground-truth partions from the
information-theoretic perspective.

B. Evaluation of Key Components

1) Impact of Pairwise Constraints: First, we evaluate the
effect of the constrained sparse representation and constrained
spectral clustering for both the CS-VFC and CMVFC as
shown in Tables I and II, respectively. We compare four
cases: without using pairwise constraints (NoPC), pairwise
constraints used in sparse representation (PCInSR), pairwise
constraints used in spectral clustering (PCInSC) and used in
both steps (PCInBoth). These results clearly show that fully
utilizing the constraints in the two-step manner significantly
outperforms the others. The performance of PCInSR is majorly
better than that of NoPC, which shows the effectiveness of our
constrained sparse subspace representation. On average, the
accuracies of PCInSR are higher than those of NoPC about
10% and 7% on the three datasets for CS-VFC and CMVFC,
respectively. The contribution of constraints only in spectral
clustering is slightly larger than that of PCInSR, which further
validates the advantage by introducing the pairwise constraints
as regularization into spectral clustering.

2) Impact of Multi-View Consistence: Then, to evaluate
our constrained multi-view clustering algorithm qualitatively,
we visualize the similarity matrices based on new represen-
tations of faces which are obtained according to each feature
by selecting the top k max eigenvectors using Eq. (13). For
multi-view clustering, we obtain the new representation using
Eq. (17) considering the multi-view consistence. Since these
new representations all act as the input in K-means, and the
similarity matrix usually strongly affects the clustering result.
By looking into these similarity matrices, we can evaluate the
quality of the new representations individually. Specifically,
we use the linear kernel k(ui , u j ) = uT

i u j as the similarity
measure for constructing these similarity matrices.

Fig. 2 shows the similarity matrices derived from three
different types of features, where we plot the edges according
to the intended clusters. From the plot, we can see that the
clustering on the three datasets becomes more challenging
from top to bottom, especially for the YOUTUBE-6. For the
Notting-Hill dataset, the similarity matrix corresponding to the
multi-view method reveals the underlying clustering structure
more clearly than that of each single type of features as
shown in the bottom right part of the multi-view similarity
matrix. Generally, this can lead a better performance for the
subsequent clustering. For the TBBTS06E12 dataset, both
the top left part and bottom right part of the multi-view
similarity matrix are more clear than those of each single
feature. For the YOUTUBE-6 dataset, the central part of
the figure corresponding to multi-view reveals the underlying
structure of clusters better than that of each single view, and
the spearman rank coefficient is obviously larger. Please note
that, the intensity feature is obviously better than the other two
types of features for the Notting-Hill and TBBTS06E12. But
the Gabor gives better Spearman rank correlation coefficient
for the YOUTUBE-6 dataset. Even so, with the help of the
less powerful features, our multi-view clustering algorithm
outperforms the best single-view case, especially on the most
challenging YOUTUBE-6 dataset, our Spearman rank corre-
lation coefficient is about 0.33 while the second performer is
about 0.29. Generally, different features may work well on
different datasets for single-view algorithms, and it is usually
difficult to choose feature adaptively. However, the method
CMVFC relieves the limitation because it makes use of the
different features simultaneously.

C. Qualitative & Quantitative Results

1) Qualitative Results: The clustering examples of
HMRF-com and CMVFC are shown in Fig. 3. All the
clusters of Notting-Hill are shown. For the YOUTUBE-6,
we select the top 4 relatively best clusters for each method.
For each cluster, 11 faces are randomly chosen to show.
As shown in Fig. 3(a), each row contains incorrect faces
except the third one. Especially in the fifth row, about half of
clustering faces are wrongly clustered. Our method achieves
a significantly better clustering result, as shown in Fig. 3(b).
The clustering accuracies of 5 clusters (top-down) are: 100%,
82.86%, 100%, 100% and 100%, respectively. Only the
second cluster contains incorrect faces so the whole clustering
accuracy is up to 93.42%, while the accuracy of HMRF-com
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Fig. 2. Visualization of similarity matrices on Notting-Hill (top row), TBBTS06E12 (middle row) and YOUTUBE-6 (bottom row) corresponding to each
single feature and our multi-view method, respectively. The value in the top right corner of each figure indicates the Spearman rank correlation coefficient.
(a) Groundtruth. (b) INTENSITY. (c) LBP. (d) GABOR. (e) CMV.

Fig. 3. The clustering results of HMRF-com and CMVFC. The false clustering faces are highlighted by the red rectangles and the incorrect rate in each
row is approximately equal to its proportion in the clusters. (a) Result of HMRF-com on Notting-Hill. (b) Result of CMVFC on Notting-Hill. (c) Result of
HMRF-com on YOUTUBE-6. (d) Result of CMVFC on YOUTUBE-6.

is 70.21% as shown in Table III. One main reason of the
incorrect clustering may be the very similar faces and similar
hair styles. The average performance is an encouraging
result for the difficult conditions where the facial images
have different poses, facial expressions and occlusions.
As shown in Fig. 3(c)-(d), the YOUTUBE-6 is a rather
challenging dataset because of the huge appearance variation.

Although the results of both methods are not as well as those
on the other two datasets, four out of the eight characters are
reasonably clustered as shown in Fig. 3 (d), while HMRF-com
only succeeds in one character, i.e., the majority of faces in
the first row are from the same person.

2) Quantitative Results: The detailed quantitative results
are shown in Tables III, IV and V. The highlighted
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TABLE III

RESULTS (MEAN ± STANDARD DEVIATION) OF COMPARISONS ON NMI AND ACCURACY (%) ON NOTTING-HILL WITH SAMPLING NUMBER 3

TABLE IV

RESULTS (MEAN ± STANDARD DEVIATION) OF COMPARISONS ON NMI AND ACCURACY (%) ON TBBTS06E12 WITH SAMPLING NUMBER 5

methods are state-of-the-art examples of individual types
of constrained clustering/video face clustering methods. The
results of HMRF-com in no-link case are not presented due
to its requirement for constraints to build up the neighbor-
hood system. Our method outperforms the latest best method,
HMRF-com, in all the three datasets. Table III shows the
clustering result on Notting-Hill. On the accuracy measure,
both CS-VFC and CMVFC outperform all other methods
in all cases. Compared to the second performer, except
CS-VFC, CMVFC has at least 26%, 20%, 25% and 23%
increase in the four cases: clustering without using constraints,
with using cannot-link, with must-link and with all-link
constraints, respectively. The results of CS-VFC/CMVFC in
all-link case are much higher than those without links, about
6% and 10% higher than the no-link case, respectively. This
demonstrates the effectiveness of our methods in exploiting
the pairwise constraints. Similar performance is observed on

both the TBBTS06E12 and YOUTUBE-6 datasets. In terms
of accuracy, CMVFC outperforms the second performer
25% and 22%, respectively. On the other hand, the method
CMVFC outperforms CS-VFC significantly in all cases, which
verifies the benefit of considering multi-view consistence. With
the increase of the pairwise constraints, the advantage of
CMVFC to CS-VFC is reduced. That is mainly because of
the natural diminishing returns property for the multi-view
consistence.

To further investigate the benefit of the proposed method
from the joint consideration of the pairwise constrains and
from the using of multi-view features for clustering, we con-
duct all the single-view methods using every type of features
and show the best performance in Fig. 4. Our single-view
method (CS-VFC) outperforms the other comparisons in terms
of NMI, which indicates the improvement from the pairwise
constraints. In detail, the improvements over the best
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TABLE V

RESULTS (MEAN ± STANDARD DEVIATION) OF COMPARISONS ON NMI AND ACCURACY (%) ON YOUTUBE-6 WITH SAMPLING NUMBER 10

Fig. 4. The performance of each method using the best features. The labels
INT, GAB are short for INTENSITY and GABOR features, respectively.

compared method are about 12.6%, 9.7%, 7.2% for
Notting-Hill, TBBTS06E12 and YOUTUBE-6, respectively.
In the other point of view, these three features have various
representation power for face clustering. Overall, LBP is
a promising feature in our experiments. Moreover, the
proposed multi-view method (CMVFC) further outperforms
the proposed single-view method (CS-VFC) using the best
feature, which indicates the benefit from using multi-view
features for clustering. On average, the improvement is about
4% on these three datasets in terms of NMI.

D. Robustness With Different Sampling Numbers
The face sampling number from tracks often affects both the

clustering accuracy and the computational cost. We conduct
experiments on the three datasets with all-link constraints, and
test the influence of different sampling numbers. For both the
Notting-Hill and TBBTS06E12 dataset, the sampling numbers
range from 3 to 10. For the YOUTUBE-6 dataset, a slightly
larger sampling number is taken for a better measurement of
influence of sampling number, since the number of face tracks
in YOUTUBE-6 dataset corresponding to each individual is
much less than those of the other two datasets. As shown
in Fig. 5, CS-VFC mostly outperforms the previous work

significantly with all different sampling numbers. Note that,
although the CS-VFC achieves the promising performance,
CMVFC consistently improves it under each sampling number.
The general picture is that the method CMVFC clearly
outperforms the other methods under different sampling
number from face tracks, which implies the robustness of our
method.

E. Robustness With Detection Error

Generally, it is challenging to accurately cluster video
faces for a totally automatic end-to-end system. We conduct
experiments on TBBTS06E12 to evaluate the proposed method
under detection error. As shown in Fig. 7(a), the detection
error rate of tracks degrades significantly while the face
number threshold T increases from 10 to 40. This validates the
reasonability of setting the threshold of track length as stated
in subsection III-A. Note that, the larger threshold means the
less available tracks (e.g., there are less than 19 tracks when
T > 138, though the error rate is 0, as indicated by the red
dash line in Fig. 7(a)). Therefore, we choose an appropriate
value for T to well tradeoff the number of available tracks
and the error rate. Specifically, we set T = 30 and obtain
267 tracks, 21 out of which have detection errors. We sample
5 faces in each face track and conduct CMVFC on this
noisy data. Fig. 7(b) and Fig. 7(c) are confusion matrices
for CMVFC on the data with/without detection errors,
respectively. We adopt the same metric as in [15] to evaluate
the clustering result on noisy data. On the 246 clean tracks
with correct face detections, our method achieves 74.39% in
terms of accuracy. It is observed that our method still achieves
a promising clustering result, 64.04% when 7.86% inaccurate
face tracks are involved.

F. Parameter Tuning

1) Trade-Off Factors: In our experiments, there are mainly
three parameters, α, β and γ in Eq. (17), which correspond
to the must-link pairwise constraint, the cannot-link constraint
regularization terms and the multi-view consistence,
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Fig. 5. The performance in terms of NMI with respect to different sampling numbers. (a) Notting-Hill. (b) TBBTS06E12. (c) YOUTUBE-6.

Fig. 6. Parameter tuning on Notting-Hill. We tune one parameter by fixing the others.

Fig. 7. The performance of our method with respect to errors in face detection and tracking. Error rate of tracks with respect to the threshold T of track
length (a), and the confusion matrices on the data with (b) and without (c) detection errors. The elements below the red line in (b) indicate the detection
errors.

Fig. 8. Iteration number tuning of objective function on Notting-Hill. (a) The intermediate result of objective function in Eq. (17). (b)-(e) The similarity
matrices corresponding to U(v) in Eq. (17) in different iterations.

respectively. We tune one parameter by fixing the others, as
shown in Fig. 6. For all the three datasets, the default values
for α and γ are 1, and 0 for β. The parameters are tuned
from 0 to 1.5 with an interval of 0.1. The general picture is

that both the pairwise constraints and multi-view consistence
clearly play important roles. The performance is relatively
robust for α since a relatively large value is sufficient, as
shown in Fig. 6(a). This demonstrates that although the must-
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link constraints have been incorporated in the representation
step, we further improve the performance in clustering step by
exploiting these priors. Similarly, an increasing performance
is achieved after introducing the cannot-link constraints in
the clustering step, as shown in Fig. 6(b). Our method gives
a relatively good performance when 0.2 ≤ γ ≤ 1, as shown
in Fig. 6(c). This implies that it is not always reasonable to
enforce the consistence across multiple views too much.

2) Convergence Rate: Fig. 8(a) gives the clear instruction
for setting the iteration number in Eq. (17). For each iteration,
the new representation U(v) corresponding to each descriptor
matrix X(v) is updated. According to each new representation,
the value of the objective function is calculated. It is observed
that the value of our objective function is nearly maximized
and stable when the iteration number is larger than 3. Thus,
in our experiments, the iteration number is set to 5 to ensure
the stable solutions. We plot the similarity matrices corre-
sponding to U(v) at each iteration. The similarity matrix is
stable after the second iteration.

V. CONCLUSION

This paper has shown how to utilize the inherent benefits
of a video to help face clustering. Together with multi-view
features, we have proposed a novel algorithm, Constrained
Multi-View Video Face Clustering (CMVFC), in which the
inherent benefits are used as must-link and cannot-link
constraints. We fully take advantage of must-links and cannot-
links in two steps, including constrained sparse subspace repre-
sentation and constrained spectral clustering. The constrained
sparse subspace representation enforces our representation to
focus on exploring unknown relationships. In the constrained
spectral clustering step, we further exploit these constraints.
Moreover, we extend our method to the multi-view framework
to exploit multiple types of features and pairwise constrains
simultaneously. Experiments have demonstrated the significant
improvement of our method.
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